首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
About 25 years ago, Bogdanovic and Schwickardi (B. Bogdanovic, M. Schwickardi: J. Alloys Compd. 1–9, 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4. This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials, in particular boron hydrogen compounds. Mg(BH4)2, with a hydrogen content of 14.9 wt %, has been extensively studied, and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8, which is an important intermediate between BH4 and B12H122−, is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently, an all-solid-state 4 V Na battery prototype using a Na4(CB11H12)2(B12H12) solid electrolyte has been demonstrated. In this review, we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4 to B12H122−, and a discussion of relevant necessary properties for high-ionic-conduction materials.  相似文献   

2.
Present study offers great prospects for the adsorption of anti-inflammatory celecoxib molecule (CXB) over the surface of zinc oxide (Zn12O12) and magnesium oxide (Mg12O12) nanoclusters in several environments by performing robust theoretical calculations. Density functional theory (DFT), time-dependent density functional theory (TDDFT) and molecular docking calculations have been extensively carried out to predict the foremost optimum site of CXB adsorption. It has been observed that the CXB molecule prefers to be adsorbed by its SO2 site on the Zn-O and Mg-O bonds of the Zn12O12 and Mg12O12 nanoclusters instead of NH2 and NH sites, where electrostatic interactions dominate over the bonding characteristics of the conjugate complexes. Furthermore, the presence of interactions between the CXB molecule and nanoclusters has also been evidenced by the UV–Vis absorption spectra and IR spectra. Molecular docking analysis has revealed that both adsorption states including CXB/Zn12O12 and CXB/Mg12O12 have good inhibitory potential against protein tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1), and human epidermal growth factor receptor 2 (HER2). Hence they might be explored as efficient TNF-α, IL-1, and HER2 inhibitors. Hence from the study, it can be anticipated that these nanoclusters can behave as an appropriate biomedical carrier for the CXB drug delivery.  相似文献   

3.
在研究RuCl2(PPh3)3 和 closo-B10H102- 在乙醇中的反应时,意外分离得到一个阴离子型的钌硼烷化合物[Et4N][(PPh3)2ClRuB12H12], 并且经过红外光谱和单晶X射线衍射分析确证. 在其结构中,闭式B12H122-配体与Ru(II)中心通过三个B-H-Ru三中心-二电子键结合. 分析原因应是在通过文献方法制备闭式B10H102-时的少量副产物闭式B12H122-在反应体系中与RuCl2(PPh3)3反应而生成了标题化合物. 根据硼烷簇合物的电子计数规则, 标题化合物也可以看成是含有2n (n为簇顶点数)个骨架电子的pileo型簇合物, 具有加帽(capped)的闭式多面体骨架构型. 这是第一个阴离子型的含有闭式B12H122- 的钌化合物.  相似文献   

4.
Super‐ and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to the chemical industry as oxidizing agents, biocatalysts, and building blocks of salts. Using the well‐known Wade–Mingos rule for describing the stability of closo‐boranes BnHn2? and state‐of‐the‐art theoretical methods, we show that a new class of super‐ and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens, in which a central metal atom is surrounded by halogen atoms, the superhalogens formed according to the Wade–Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, a single borane‐like moiety is sufficient to give M(B12H12) clusters (M=Li, Na, K, Rb, Cs) superhalogen properties. In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. Examples include M(B12H13)2 and M(CB11H12)2 (M=Li–Cs). This finding opens the door to an untapped source of superhalogens and weakly coordinating anions with potential applications.  相似文献   

5.
The molecular structure of enigmatic “poly(aluminium-methyl-methylene)” (first reported in 1968) has been unraveled in a transmetalation reaction with gallium methylene [Ga8(CH2)12] and AlMe3. The existence of cage-like methylaluminomethylene moieties was initially suggested by the reaction of rare-earth-metallocene complex [Cp*2Lu{(μ-Me)2AlMe2}] with excess AlMe3 affording the deca-aluminium cluster [Cp*4Lu2(μ3-CH2)12Al10(CH3)8] in low yield (Cp*=C5Me5). Treatment of [Ga8(CH2)12] with excess AlMe3 reproducibly gave the crystalline dodeca-aluminium complex [(CH3)12Al12(μ3-CH2)12] (MAM-12). Revisiting a previous approach to “poly(aluminium-methyl-methylene” by using a (C5H5)2TiCl2/AlMe3 (1 : 100) mixture led to amorphous solids displaying solubility behavior and spectroscopic features similar to those of crystalline MAM-12. The gallium methylene-derived MAM-12 was used as an efficient methylene transfer reagent for ketones.  相似文献   

6.
Chemisorption of Furan on the surfaces of four different semiconductors (Al12N12, Al12P12, B12N12, and B12P12) has been investigated, and the results have been compared using density functional theory in terms of energetic, geometric, and electronic property. Two functionals, dispersion corrected (wB97XD) and non‐corrected (B3LYP), have been used for calculation of binding energy. The results show that chemisorption of Furan on these semiconductors is in the order of Al12N12 (−98.4 kJ mol−1) > Al12P12 (−77.5 kJ mol−1) > B12N12 (−46.6 kJ mol−1) > B12P12 (−18.3 kJ mol−1), while the order of change in the HOMO–LUMO gap of semiconductors upon adsorption of Furan is found as B12N12 > B12P12 > Al12P12 > Al12N12, which implies to the higher changes in the electronic structure of B‐containing clusters (B12N12 and B12P12) compared to Al‐containing clusters (Al12N12 and Al12P12). The NBO charge analyses reveal maximum and minimum charge transfer upon adsorption of Furan on B12N12 and B12P12, respectively. Based on the results, it was found that Al12N12 and B12N12 as the most appropriate adsorbent and the most sensitive sensor for Furan, respectively.  相似文献   

7.
Structures, energies, and aromatic characters are compared and contrasted for a series of [n]persilacyclacenes with n = 6–12: Si24H12, Si28H14, Si32H16, Si36H18, Si40H20, Si44H22, and Si48H24, respectively, at B3LYP levels (n, number of fused benzenoid rings). These are a brand of silicon nanorings that bear a resemblance to the shortest zig‐zag silicon nanotubes (SiNTs), henceforth referred to as SiNRs. The NBO results show nearly sp2‐hybridization for virtually all Si atoms of our SiNRs. This is in contrast to most reports where sp3‐hybridization is proposed for typical SiNTs. Comparison between the optimized SiNRs and their corresponding planar (polyacenic) forms shows longer bond lengths for the former, due to their curvatures. Except for sterically hindered Si24H12 (n = 6), all even SiNRs (n = 8, 10, and 12), are more aromatic than the odd ones (n = 7, 9, and 11). Such a higher aromaticity is witnessed inside, outside, and on the surface of the scrutinized SiNRs. Also, except for Si44H22 (n = 11), the energy gaps (ΔEHOMO?LUMO) for the odd set of SiNRs, as well as the even set, appear inversely proportional to their corresponding diameters, per se. Except for the sterically hindered SiNRs with n = 6 or 7, all the even SiNRs enjoy a higher stability (aromaticity) and conductivity for showing lower ΔEHOMO?LUMO than the odd ones. Evidently, the ideal diameter for persilacyclacenes (SiNRs) studied is from 0.92 to 1.42 nm, corresponding to n = 8–12, respectively. Higher than 1.42 nm causes structural disorders while lower than 0.92 brings about bond localization due to the high‐steric effects. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

8.
A perfect hybrid complex C60(FeCp)12 is predicted using density functional theory method. This fullerene derivative could be view as a C60 cage of which each C5 ring coordinates a (FeCp) ligand. Theoretical calculation reveals that it has a large lowest unoccupied molecular orbital–highest unoccupied molecular orbital gap (2.53 eV) and keeps the Ih symmetry of C60. But the C? C bond length of its inner C60 cage trends to be uniform, which is quite different from the bonding character of C60 fullerene. Further investigation reveals that the chemical bonding, TDOS and the aromaticity of the (C5FeCp) unit in C60(FeCp)12 are similar as those of ferrocene molecule, which indicates the similarity of their electronic properties. So, this compound could be viewed as the combination of ferrocene molecules. Thus, its unconventional formation process from 12 Fe(Cp)2 is proposed and the reaction energy is calculated. As the C60(FeCp)12 compound has the geometry framework as C60 and the electronic characters as ferrocene, it would inherit the outstanding properties from both two molecules and have wild potential applications in nanochemistry. We hope our study could give some references for the further investigation and experimental synthesis research of the C60(FeCp)12 compound. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
In this account, a new concept of “sponge crystals” is presented on the basis of new interpretation of our previous results of porous heteropolyacids, that is, porous aggregates of self-assembled (NH4)3PW12O40 nanocrystallites (Ito, Inumaru, and Misono, J. Phys. Chem. B 101 (1997) 9958; Chem. Mater. 13 (2001) 824) “Sponge crystals” are defined as single crystals having continuous voids within them, but unlike zeolites, no intrinsic structural pores. This new category includes molecular single crystals having continuous voids originating from series of neighboring vacancies (≥1 nm) of the constituent large molecules, affording nanospaces in the crystals. A typical example of “sponge crystals” is (NH4)3PW12O40, which is formed via the dropwise addition of ammonium hydrogen carbonate into an H3PW12O40 aqueous solution (titration method) at 368 K. The resulting (NH4)3PW12O40 nanocrystallites (ca. 6–8 nm) then self-assemble with the same crystal orientation to form porous dodecahedral aggregates in the solution. During the formation process, necks grow epitaxially between the surfaces of the nanocrystallites (“Epitaxial Self-Assembly”) to form aggregates of which each aggregate has an ordered structure as a whole single crystal. Although the crystal structure of (NH4)3PW12O40 has no intrinsic structural(“built-in”) pores, X-ray diffraction, electron diffraction and gas adsorption experiments all reveal that each (NH4)3PW12O40 aggregate is comprised of a single crystal bearing many micropores. These pores are considered to be continuous spaces as neighboring vacancies of the molecules (anions and cations) originating from the residual spaces between the self-assembled nanocrystallites. The porous (NH4)3PW12O40 single crystals are considered a special case of “mesocrystals,” as was recently discussed by Cölfen and Antonietti (Angew. Chem. Int. Ed. 44 (2005) 5576). In contrast to most “mesocrystals,” which are generally polycrystalline in nature, each aggregate of (NH4)3PW12O40 is a characteristic porous single crystal. Furthermore, the micropores of (NH4)3PW12O40 are totally different from those found in other microporous crystals: zeolites have “built-in” pores defined by their crystal structure, while the (NH4)3PW12O40 nanocrystallites have none. Since (NH4)3PW12O40 micropores are continuous spaces as neighboring vacancies of the molecules, the shapes of the (NH4)3PW12O40 pores can in principle, assume various connectivities or networks within the crystal, and as such, are subsequently termed: “sponge crystals.”  相似文献   

10.
The adsorption of penicillamine (PCA) on pure B12N12 and B12CaN12 nanocages in aqueous and chloroform solvents has been evaluated using density functional theory (DFT) calculations. The interaction of PCA on B12N12 nanocages is chemisorption through its four nucleophilic sites: amine, carbonyl, hydroxyl and thiol. The most stable adsorption configuration was achieved when zwitterionic PCA adsorbs via its carbonyl group in water with value of ?1.723 eV, in contrast, when neutral PCA adsorbs via its amine group in chloroform with value of ?1.68 eV. Intercalated calcium ion within B12N12 nanocage (B12CaN12) was shown to attract PCA onto nanocage surface, resulting in higher solubility and adsorption energy after their complexation in water and chloroform. The adsorption of multiple PCA molecules from their amine and carbonyl groups on pure and B12CaN12 nanocages were also evaluated where two and three molecules can be chemisorbed on boron atoms of the nanocage surfaces with the adsorption energy per PCA reduces slightly with the increasing the amount of drugs due to the curvature effects. Molecular docking study indicates that PCA from its NH2 group on B12CaN12 nanocage has the best binding affinity and inhibition potential of tumor necrosis factor-alpha (TNF-α) and Interleukin-1 (IL-1) receptors as compared with the other adsorption systems. Molecular docking and ADMET analysis displayed that the chosen compounds pass Lipinski Rule and have appropriate pharmacokinetic features suitable as models for developing anti-inflammatory agents.  相似文献   

11.
The first series of niobium–tungsten–lanthanide (Nb‐W‐Ln) heterometallic polyoxometalates {Ln12W12O36(H2O)24(Nb6O19)12} (Ln=Y, La, Sm, Eu, Yb) have been obtained, which are comprised of giant cluster‐in‐cluster‐like ({Ln12W12}‐in‐{Nb72}) structures built from 12 hexaniobate {Nb6O19} clusters gathered together by a rare 24‐nuclearity sodalite‐type heterometal–oxide cage {Ln12W12O36(H2O)24}. The Nb‐W‐Ln clusters present the largest multi‐metal polyoxoniobates and a series of rare high‐nuclearity 4d‐5d‐4f multicomponent clusters. Furthermore, the giant Nb‐W‐Ln clusters may be isolated as discrete inorganic alkali salts and can be used as building blocks to form high‐dimensional inorganic–organic hybrid frameworks.  相似文献   

12.
It has been demonstrated that the reaction of Cat[Ag[B12H12]] or [Ag2[B12H12]] with chelating ligands L (L = bipy, phen) leads to the selective formation of stable [(Ag2(L)2[B12H12]] n 1D polymers irrespective of the nature of cation (Cat) in the starting reagent, the ratio of the reaction components, and the solvent used. The structures of [Ag2(bipy)2[B12H12]] n · 2CH3CN and [Ag2(phen)2[B12H12]] n · DMF have been determined by X-ray crystallography. It has been demonstrated that the [B12H12]2? anion in polymer chains acts as a bridging ligand coordinated to silver atoms through edges or through an edge and a vertex of the icosahedron. The Ag–B(H) and Ag–H(B) distances are within 2.638(3)–3.074(3) and 1.90–2.80 Å, respectively. These complexes are the first examples of 1D coordination polymers based on the [B12H12]2? anion and azaheterocyclic ligands L.  相似文献   

13.
以4种Keggin型多酸作为原料(分别为H3PW12O40·36H2O(简写为PW12a)、H3PMo12O40·34H2O(简写为PMo12a)、H4SiW12O40·35H2O(简写为SiW12a)和H4GeW12O40·40H2O(简写为GeW12a)),采用表面活性剂智能化控制的软化学法制备了相应的4种Keggin型多酸纳米材料,分别为Ag3PW12O40·36H2O(简写为PW12b)、Ag3PMo12O40·34H2O(简写为PMo12b)、Ag4SiW12O40·35H2O(简写为SiW12b)和Ag4GeW12O40·40H2O(简写为GeW12b)。采用IR、UV-Vis、XRD和SEM表征多酸的结构和纳米粒子的形貌。在室内黑暗条件下,100mg样品可在5min内把20mg·L-1的100mL亚甲基蓝(MB)染料溶液脱色,使其变为接近无色,吸附效率最高可达96.3%,吸附效率大小为PMo12b >PW12b >GeW12b >SiW12b。相同条件下,100mg样品使20mg·L-1的100mL罗丹明B(RhB)染料溶液30min内脱色完全,脱色效率最高可达96.1%,吸附效率大小为PW12b >PMo12b >SiW12b >GeW12b。说明该4种多酸纳米材料具有较高的吸附有机染料性能。  相似文献   

14.
Several organometallic reagents such as lithium 2-lithio 4-methylphenolate 1 intermediates formed by orthometallation of o-bromoaryloxy-phosphorus(V)- 2 or -phosphorus(III)-derivatives 3 with magnesium and sodium, respectively, as well as O-methoxymethyl-protected o-lithio-4-methylphenol 4 were used to synthesize suitable precursors 5,6,9,10 of primary and secondary o-phosphinophenols. The P–C bond formation involved coupling with ClPR(NMe2), CIPR(O)(OEt) or an intramolecular carbanionic O → C shift of the P-substituent. Reduction with LiAlH4, in the cases of phosphonous or phosphinous acid amides after alcoholysis (to 7,8,11 ), produced primary and secondary o-phosphinophenols 12 , respectively, or O-protected derivatives 13 . o-Phosphinophenols 12 are easily protonated at the phosphorus atom, supported by a P+-H … O hydrogen bridge. Metallation ( 14 ), acylation, and silylation ( 16,17 ) take place preferably at the hyxdroxy group and alkylation at the phosphorus atom. Alkylation of 12 and 14 was found to be slow, but C,O-dilithiated species 15 react to give P-secondary ( 12b,d,e, ) or P-tertiary products ( 20,21 ). Cyclization of 15a with Me2SiCl2 affords the 2,3-dihydro-1,3,2-benzoxaphosphasilol 22 , cyclocondensation of 12c with RP(NMe2)2 or ClP(NMe2)2 furnishes 2,3-dihydro-1,2,3- benzodiphospholes 23 and 24 . A phosphiniden-phosphoran 25 is detected in the reaction between 12a and P(NMe2)3. © 1997 John Wiley & Sons, Inc. Heteroatom Chem 8: 383–396, 1997  相似文献   

15.
The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12O40]3? (PW12) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73Al0.22(OH)2 [PW12O40]0.04?0.98 H2O (Mg3Al‐PW12) has been successfully obtained by applying a spontaneous flocculation method. The Mg3Al‐PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT‐IR, NMR, BET). XRD patterns of Mg3Al‐PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3Al‐PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z‐CH2‐Z′ type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2‐propanol:Vwater=2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3Al‐PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3Al‐PW12‐catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction.  相似文献   

16.
ABC triblock copolymers of methyl methacrylate (MMA), (dimethylamino)-ethyl methacrylate (DMAEMA), and tetrahydropyranyl methacrylate (THPMA) consisting of 12 units of each type of monomer were synthesized by group transfer polymerization (GTP). These were the three topological isomers with differentblock sequences: DMAEMA12-THPMA12-MMA12, DMAEMA12-MMA12-THPMA12, and THPMA12-DMAEMA12-MMA12. The molecular weights and molecular weight distributions of the copolymers were determined by gel permeation chromatography (GPC) in tetrahydrofuran, and their number-average degrees of polymerization and copolymer compositions were calculated by proton nuclear magnetic resonance spectroscopy (1H-NMR). These molecular weights and degrees of polymerization corresponded closely to the values expected from the monomer/initiator ratios. The polydispersities were low as expected for GTP, and ranged from 1.09 to 1.25. The three triblocks were chemically modified by converting the THPMA units to methacrylic acid (MAA) units either by thermolysis or acid hydrolysis. The resulting ABC triblock poly-ampholytes were characterized by 1H-NMR spectroscopy and hydrogen ion titration. Aqueous GPC studies in 1.0M NaCl at pH 8.5 showed that the triblock copolymers form micelles whose size depends on their block sequence. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 617–631, 1998  相似文献   

17.

The aim of this study is to explore the potential of utilizing carbon-doped fullerene-like boron-nitride nanocages (B11N12C and B12N11C) as an efficient metal-free catalyst for the oxidation of SO2 to SO3 molecule in the presence of N2O. The oxidation of SO2 over B11N12C includes two steps. First, the N2O molecule is decomposed into an activated oxygen atom (O*) and N2 molecule, and then the SO2 molecule is oxidized by the O* species. In the case of B12N11C and B12N12, however, the reaction starts with the coadsorption of SO2 and N2O molecules, followed by the decomposition of N2O and the formation of SO3 and N2 species. According to our results, B11N12C exhibits larger catalytic activity for the SO2 oxidation compared with B12N11C and B12N12 clusters. The estimated activation energy for the SO2 + O* → SO3 reaction catalyzed over the B11N12C surface is 5.8 kcal/mol, which is comparable with those reported about noble-metal catalysts. The results of this study can be useful for developing metal-free catalysts based on C-doped BN nanostructures.

  相似文献   

18.
以4种Keggin型多酸作为原料(分别为H3PW12O40·36H2O(简写为PW12a)、H3PMo12O40·34H2O(简写为PMo12a)、H4SiW12O40·35H2O(简写为SiW12a)和H4GeW12O40·40H2O(简写为GeW12a)),采用表面活性剂智能化控制的软化学法制备了相应的4种Keggin型多酸纳米材料,分别为Ag3PW12O40·36H2O(简写为PW12b)、Ag3PMo12O40·34H2O(简写为PMo12b)、Ag4SiW12O40·35H2O(简写为SiW12b)和Ag4GeW12O40·40H2O(简写为GeW12b)。采用IR、UV-Vis、XRD和SEM表征多酸的结构和纳米粒子的形貌。在室内黑暗条件下,100 mg样品可在5 min内把20 mg·L-1的100 mL亚甲基蓝(MB)染料溶液脱色,使其变为接近无色,吸附效率最高可达96.3%,吸附效率大小为PMo12b > PW12b > GeW12b > SiW12b。相同条件下,100 mg样品使20 mg·L-1的100 mL罗丹明B(RhB)染料溶液30 min内脱色完全,脱色效率最高可达96.1%,吸附效率大小为PW12b > PMo12b > SiW12b > GeW12b。说明该4种多酸纳米材料具有较高的吸附有机染料性能。  相似文献   

19.
A new class of hexameric Ln12‐containing 60‐tungstogermanates, [Na(H2O)6?Eu12(OH)12(H2O)18Ge2(GeW10O38)6]39? ( Eu12 ), [Na(H2O)6?Gd12(OH)6(H2O)24Ge(GeW10O38)6]37? ( Gd12 ), and [(H2O)6?Dy12(H2O)24(GeW10O38)6]36? ( Dy12 ), comprising six di‐Ln‐embedded {β(4,11)‐GeW10} subunits was prepared by reaction of [α‐GeW9O34]10? with LnIII ions in weakly acidic (pH 5) aqueous medium. Depending on the size of the LnIII ion, the assemblies feature selective capture of two (for Eu12 ), one (for Gd12 ), or zero (for Dy12 ) extra GeIV ions. The selective encapsulation of a cationic sodium hexaaqua complex [Na(H2O)6]+ was observed for Eu12 and Gd12 , whereas Dy12 incorporates a neutral, distorted‐octahedral (H2O)6 cluster. The three compounds were characterized by single‐crystal XRD, ESI‐MS, photoluminescence, and magnetic studies. Dy12 was shown to be a single‐molecule magnet.  相似文献   

20.
We modeled and studied three types of novel B12C24N12 cages. The structure of these cages was inspired by those of BC2N nanotubes and the B24N24 fulborene skeleton. Density functional theory was used to investigate the various properties of the cages. All three isomers of B12C24N12 were vibrationally stable. The highest occupied molecular orbital‐lowest unoccupied molecular orbital band gap was dependent on the BC2N cage type. The B12C24N12‐II cage was the most favorable nanocage and exhibited a large electric dipole moment. Natural bonding orbital (NBO) analysis confirmed the existence of lone pairs and unoccupied orbitals in the B12C24N12 cages. New donor–acceptor interactions of natural MOs (Molecular Orbitals) were observed in BC2N nanocages. The NBO and atomic polar tensor charges appeared to be fairly well correlated, showing that atomic charges can be obtained at a lower computational cost in this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号