首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a turn‐on paper‐based optical analytical system with a rapid, sensitive and quantitative response for glucose was developed. The luminescence sensing material, crystalline iridium(III)‐Zn(II) coordination polymers, or Ir‐Zne, was grown electrochemically on stainless steel mesh and then deposited on filter paper. This sensing substrate was subsequently built up under glucose oxidase encapsulated in hydrogel and then immobilized on egg membrane with the layer‐by‐layer method. Once the glucose solution was dropped onto the paper, the oxygen content was depleted simultaneously with a concomitant increase in the phosphorescence of Ir‐Zne. The detection limit for glucose was 0.05 mM. The linear dynamic range for the determination of glucose was 0.05–8.0 mM with a correlation coefficient (R2) of 0.9956 (y=68.11 [glucose]?14.72). The response time was about 0.12 s, and the sample volume was less than 5 μL. The effects of mesh size, buffer concentration, pH, enzyme concentration, temperature, and interference, and the stability of the biosensor, have also been studied in detail. Finally, the biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

2.
Direct electrochemistry of cholesterol oxidase (ChOx) immobilized on the conductive poly‐3′,4′‐diamine‐2,2′,5′,2″‐terthiophene (PDATT) was achieved and used to create a cholesterol biosensor. A well‐defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH2 of ChOx, and the rate constant (ks) was determined to be 0.75 s?1. Glutathione (GSH) covalently bonded with PDATT was used as a matrix for conjugating AuNPs, ChOx, and MP, simultaneously. MP co‐immobilized with ChOx on the AuNPs‐GSH/PDATT exhibited an excellent amperometric response to cholesterol. The dynamic range was from 10 to 130 μM with a detection limit of 0.3±0.04 μM.  相似文献   

3.

Frequency response of the glucose sensor based on the immobilized glucose oxidase membrane was investigated experimentally by giving the sinusoidal change of glucose concentration to the glucose sensor and observing its output signal. Observed values of gains and phase lags of the frequency response of the glucose sensor followed the frequency response model of the first-order with dead time; The time constant and also the dead time were estimated and found to decrease as the amount of enzyme immobilized in the membrane increased and the thickness of the membrane decreased.

  相似文献   

4.
A glucose electrode was composed of a dissolved oxygen electrode and an immobilized glucose oxidase membrane prepared by plasma polymerization of propargyl alcohol as a monomer. Fairly good precision of the electrode response to sample solutions was obtained by measurements using the steady-state method or the reaction rate method. Activity of the glucose oxidase immobilized within the membrane and mounted on the electrode lasted for 50 consecutive measurements over 5 days, and, if the membrane was stored in a buffer solution of pH 7.0 at a temperature of 0°C, the activity was preserved for more than 2 months. Such immobilization of the glucose oxidase with the plasma polymer effectively suppressed interference from Cu2+ions, which would seriously interrupt oxidation of the glucose in homogeneous solutions, in the sample solutions.  相似文献   

5.
Bilayer glucose isomerase was immobilized in porousp-trimethylamine-polystyrene (TMPS) beads, through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme:matrix ratio of 924 IU/g wet carrier, and hexamethylenebis(trimethylammonium iodine) concentration of 15 mg/mL, giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per day.  相似文献   

6.
ASulfolobus solfataricus β-glycosidase expressed inSaccharomyces cerevisiae (Sβgly) was immobilized on chitosan activated with glutaraldehyde. The yield of immobilization was evaluated as 80%. Compared to the free β-glycosidase, the immobilized enzyme showed a similar pH optimum (pH = 7.0), the same increasing activity up to 80°C, improved thermostability, and no inhibition by glucose. Functional studies pointed out that the kinetic constant values for both enzymes were comparable. A bioreactor, assembled with the immobilized Sβgly, was used for glucose production. The values of cellobiose conversion increased on increasing residence time in the bioreactor, following a nonlinear trend. However, the highest glucose production/ min was obtained at a flow of 0.5 mL/min.  相似文献   

7.
The usefulness of a glass fibre filter method to collect airborne methyl isocyanate (MIC) was studied in laboratory experiments and in a workplace during manufacture of mineral wool insulation material. Filter collection was based on derivatisation in situ with 1-(2-methoxyphenyl)piperazine (2MP). 2MP impinger sampling was also evaluated in the workplace. Impinger sampling with dibutylamine (DBA) was used as an independent method. The samples were analysed by liquid and gas chromatography using various detection techniques: mass spectrometry, ultraviolet and electrochemical detection (LC-MS, LC-UV, LC-EchD and GC-MS). The sampling efficiency of 2MP filters for MIC varied with the origin of the glass fibre filter. Two Whatman filters (diameter 25 mm) with altogether 21 mumol of 2MP collected 100% of 9.8 micrograms of MIC during 30 min at an airflow rate of 1 l min-1. The workplace measurements were performed at two concentration levels, 0.003 and 0.09 mg m-3. The theoretical amounts of derivatisation reagent were 42 mumol (2MP filter), 52 mumol (2MP impinger) and 100 mumol (DBA). MIC concentrations were 20% lower by the 2MP methods compared with the DBA method (statistically significant difference). Breakthrough was 6% for the DBA method and 9% for the 2MP impinger method. To trap both MIC and isocyanic acid, which was also present in the workplace samples, a tenfold molar amount of 2MP reagent was used. The precision of sample preparation, expressed as relative standard deviation, was 3.5% (0.17 microgram ml-1, n = 6). The precision of sampling in the workplace was 15% (0.002 mg m-3, n = 6). The limit of quantification was 0.0006 mg m-3 for 30 l of air by the 2MP impinger method and 0.03-0.05 mg m-3 by the 2MP filter method. Hence, airborne MIC can be determined using 2MP as derivatisation reagent. Impinger sampling is preferable when low concentration levels are expected.  相似文献   

8.
The metalloproteinase MP belongs to the serralysin family, which is involved in important functions such as nutrient acquisition and infection pathogenesis. Serralysin proteases in highly purified form are commonly used at the industrial level with several purposes. In this study, we set up an efficient and rapid purification protocol for MP using a p‐aminobenzamidine‐modified affinity chromatography. The affinity medium was synthesized by using p‐aminobenzamidine as affinity ligand immobilized via cyanuric chloride spacer to Sepharose 6B sorbent carrier. According to the adsorption analysis, the dissociation constant K d and theoretical maximum adsorption Q max of this medium were 24.2 μg/mL and 24.1 mg/g wet sorbent, respectively. The purity of MP was assessed by a high‐performance liquid chromatography on a TSK3000SW column and sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealing values of 98.7 and ∼98%, respectively. The specific activity of purified MP was 95.6 U/mg, which is similar to values obtained through traditional purification protocols. In conclusion, our protocol could be easily employed for the rapid isolation of MP with high purity, and could be implemented for other serralysin family proteases.  相似文献   

9.
金属有机骨架(MOFs)材料具有均匀的孔隙率和大的比表面积,可作为固定化酶的载体。然而,固定化酶由于较长响应时间或酶易泄漏的缺点阻碍了其应用。本研究选取类过氧化物酶 MIL-101为载体,戊二醛(GA)为交联剂,通过交联法将葡萄糖氧化酶(GOx)固定在载体上,建立了模拟多酶体系GOx@GA@MIL-101。制备的复合物可进一步高效催化级联反应检测葡萄糖。GOx@GA@MIL-101具有更快的催化变色效果(30 s)。  相似文献   

10.
A biosensor for glucose utilizing kinetics of glucose oxidase (EC 1.1.3.4.) was developed. The enzyme was immobilized on polyaniline by covalent bonding, using glutaraldehyde as a bifunctional agent. The system showed a linear response up to 2.2 mM of glucose with a response time of 2.5–4.0 min. In addition, the immobilized enzyme had a higher activity between pH 6.5 and 7.5. The system retained 50% of its activity after 30 d of daily use. The optical absorption spectra of the polyaniline/glucose oxidase electrode after glucose had been added to the buffer solution showed that the absorption band around 800 nm had changed considerably when glucose was allowed to react with the electrode. This optical variation makes polyaniline a very promising polymer for use as a support in optical sensor for clinical application.  相似文献   

11.
《Electroanalysis》2006,18(15):1499-1504
An amperometric method for the determination of glucose using a screen printed carbon electrode is reported. The electrode material was bulk modified with rhodium dioxide and the enzyme glucose oxidase immobilized in a Nafion‐film on the electrode surface and investigated for its ability to serve as a detector of glucose in flow injection analysis. The sensor exhibited a linear increase of the amperometric signal with the concentration of glucose in the range of 1–250 mg L?1 with a detection limit (evaluated as 3σ) of 0.2 mg L?1 under optimized flow rate of 0.4 mL min?1 in 0.1 M phosphate buffer (pH 7.5) carrier. At the potential applied (?0.2 V vs. Ag/AgCl), interferences from redox species present in the sample matrix were negligible. The biosensor reported here retained its activity for more than 40 injections or 4 months of storage at 6 °C. The RSD was determined as 1.8% for a glucose concentration of 25 mg L?1 (n=5) with a typical response time of about 28 s.  相似文献   

12.
Bilayer glucose isomerase was immobilized in porousp-trimethylaminepolystyrene (TMPS) beads through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme-to-matrix ratio of 924 IU/g wet carrier, and hexamethylene bis(trimethylammonium iodine) concentration of 15 mg/mL giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per d.  相似文献   

13.
A method for simultaneous covalent immobilization of glucose oxidase and peroxidase with previously oxidized carbohydrate residues to urea derivative of regenerated acetylcellulose granules is described. The effect of immobilization on the catalytic properties of the separately immobilized enzymes are studied. The immobilized enzymes manifested no change in their pH and temperature optima and slight increase ofK m x compared to data for the soluble enzymes. A column packed with simultaneously immobilized enzymes is used for manual glucose determination in blood sera. The results are in high correlation with those obtained by the Beckman Glucose Analyzer method (r = 0.976). The method is economic (the enzyme-carrier conjugate may be used more than 300 times), easy to perform, and less time consuming than the manual methods utilizing soluble enzymes. The established manual method can be proposed for emergency clinical analysis and smaller clinical laboratories.  相似文献   

14.
A simple, one-step process, using 0.25Mp-benzoquinone dissolved in 20% dioxane at 50°C for 24 h was applied to the activation of polyacrylamide beads. The activated beads were reacted with glucose oxidase isolated fromAspergillus niger. The coupling reaction was performed in 0.1M potassium phosphate at pH 8.5 and 0–4°C for 24 h. The protein concentration was 50 mg/mL. In such conditions, the highest activity achieved was about 100 U/g solid. The optimum pH for the catalytic activity was shifted by about 1 pH unit in the acidic direction to pH 5.5. Between 35 and 50°C, the activity of the immobilized form depends on the temperature to a smaller extent than that of the soluble form. Above 50°C, the activity of immobilized glucose oxidase shows a sharper heat dependence. The enzyme-substrate interaction was not profoundly altered by the immobilization of the enzyme. The heat resistance of the immobilized enzyme was enhanced. The immobilized glucose oxidase is most stable at pH 5.5. The practical use of the immobilized glucose oxidase was tested in preliminary experiments for determination of the glucose concentration in blood sera.  相似文献   

15.
We report on the redox behaviour of the microperoxidase‐11 (MP‐11) which has been electrostatically immobilized in a matrix of chitosan‐embedded gold nanoparticles on the surface of a glassy carbon electrode. MP‐11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP‐11 at high scan rate is between 350±50 pmol cm?2, which reflects a multilayer process. The formal potential (E°′) of MP‐11 in the gold nanoparticles‐chitosan film was estimated to be ?(267.7±2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (ks) starts at 1.21 s?1 and levels off at 6.45 s?1 in the scan rate range from 0.1 to 2.0 V s?1. Oxidation and reduction of MP‐11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP‐11.  相似文献   

16.
金属有机骨架(MOFs)材料具有均匀的孔隙率和大的比表面积,可作为固定化酶的载体。然而,固定化酶由于较长响应时间或酶易泄漏的缺点阻碍了其应用。本研究选取类过氧化物酶MIL-101为载体,戊二醛(GA)为交联剂,通过交联法将葡萄糖氧化酶(GOx)固定在载体上,建立了模拟多酶体系GOx@GA@MIL-101。制备的复合物可进一步高效催化级联反应检测葡萄糖。GOx@GA@MIL-101具有更快的催化变色效果(30 s)。  相似文献   

17.
《Analytical letters》2012,45(10):2079-2094
Abstract

A potentially implantable glucose biosensor for measuring blood or tissue glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and immobilized glucose oxidase enzyme, in which the immobilized enzyme can be replaced (the sensor recharged) without surgical removal of the sensor from the patient. Recharging of the sensor is achieved by injecting fresh immobilized enzyme into the sensor using a septum. A special technique for immobilization of the enzyme on Ultra-Low Temperature Isotropic (ULTI) carbon powder held in a liquid suspension has been developed.

In vitro studies of the sensors show stable performance during several recharge cycles over a period of 3 months of continuous operation.

Diffusion membranes which ensure linear dependence of the sensor response on glucose concentration have been developed. These membranes comprise silastic latex-rubber coatings over a microporous polycarbonate membrane. Calibration curves of the amperometric signal show linearity over a wide range of glucose concentrations (up to 16 mM), covering hypoglycemic, normoglycemic and hyperglycemic conditions.

The experimental results confirm the suitability of the sensors for in vitro measurements in undiluted human sera.  相似文献   

18.
Glucose oxidase and catalase were immobilized via the Ugi reaction by means of cyclohexyl isocyanide and glutaraldehyde on a nylon net partially hydrolysed by hydrochloric acid. A specific enzyme sensor for D-glucose was made by fixing the nylon net with immobilized enzymes on the tip of a Clark-type oxygen sensor. For comparison purposes glucose oxidase and catalase were also co-immobilized in the absence of cyclohexyl isocyanide or only glucose oxidase was immobilized with and without cyclohexyl isocyanide. The prepared biosensors were characterized by the specific activity of glucose oxidase and its dependence on Ph and temperature and by the apparent Michaelis constant. The linear range of the biosensor response to the substrate concentration and the stability of the biosensor were determined. The long-term stabilities of the enzyme electrodes were compared and the advangtage of the developed method was demonstrated.  相似文献   

19.
Microperoxidase-11(MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde.The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170mV.which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods.This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.  相似文献   

20.
The influence is discussed of ascorbic acid (AA) on the response of a glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(ophenylenediamine) (PPD) or overoxidized poly(pyrrole) (oxPPy) films on a Pt electrode. The kinetics of the homogeneous reaction between AA and H2O2 has been investigated by two independent methods and found to be too slow to influence the response of typical glucose biosensors. Therefore, the decrease in the sensor response, observable when working in batch under typical experimental conditions, can in no way be ascribed to a depletion of H2O2, which is produced in the biocatalytic cycle via the homogeneous reaction with AA. While the purely additive Faradaic interference can practically be nullified by both entrapping membranes, electrode fouling by electro-oxidation products of AA (responsible for the observed decrease in glucose sensitivity) might still represent a problem when working with PPD based biosensors. In this respect the permeability characteristics of the film markedly influence the magnitude of the observed phenomena. The oxPPy film achieves the goal of completely eliminating ascorbate without blocking the access of glucose to the immobilized enzyme. Permanent address: Dipartimento di Chimica, Universita' della Basilicata, Via N. Sauro 85, I-85100 Potenza, Italy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号