首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Can a few fanatics influence the opinion of a large segment of a society?   总被引:1,自引:0,他引:1  
Models that provide insight into how extreme positions regarding any social phenomenon may spread in a society or at the global scale are of great current interest. A realistic model must account for the fact that globalization, internet, and other means of mass communications have given rise to scale-free networks of interactions between people. We propose a novel model which takes into account the nature of the interactions network, and provides some key insights into this phenomenon. These include, (1) the existence of a fundamental difference between a hierarchical network whereby people are influenced by those that are higher in the hierarchy but not by those below them, and a symmetrical network where person-on-person influence works mutually, and (2) that a few “fanatics” can influence a large fraction of the population either temporarily (in the hierarchical networks) or permanently (in symmetrical networks). Even if the “fanatics” disappear, the population may still remain susceptible to the positions originally advocated by them. The model is, however, general and applicable to any phenomenon for which there is a degree of enthusiasm or susceptibility to in the population.  相似文献   

3.
We analyze general two-species stochastic models, of the kind generally used for the study of population dynamics. Although usually defined a priori, the deterministic version of these models can be obtained as the infinite volume limit of many stochastic models (which are necessarily defined by more parameters than the deterministic one). It is known that damped oscillations in a deterministic model usually correspond to oscillatory-like fluctuations in their deterministic counterparts. The quality of these “oscillations" depends on details of each stochastic model. We show, however, that the parameters of the deterministic system are generally enough to obtain very good bounds for the quality of “oscillations" in any of its stochastic counterparts. These bounds are shown to depend on only one dimensionless parameter.  相似文献   

4.
The influence of noise-flatness on overdamped motion of Brownian particles in a 1D periodic system with a simple sawtooth potential subjected to both unbiased thermal noise and three-level telegraph noise is considered. The exact formula for the stationary probability flux (current) is presented. The phenomenon of multiple current reversals and some topological properties of the hypersurface of zero current in the parameter space of noises are investigated and illustrated by phase diagrams. The conditions for the existence of four current reversals versus the switching rate of nonequilibrium noise are given. An alternative interpretation of the results in terms of cross-correlation between two dichotomous noises is presented.  相似文献   

5.
We investigate the quantum-mechanical tunneling between the “patterns" of the, so-called, associative neural networks. Being the relatively stable minima of the “configuration-energy" space of the networks, the “patterns" represent the macroscopically distinguishable states of the neural nets. Therefore, the tunneling represents a macroscopic quantum effect, but with some special characteristics. Particularly, we investigate the tunneling between the minima of approximately equal depth, thus requiring no energy exchange. If there are at least a few such minima, the tunneling represents a sort of the “random walk" process, which implies the quantum fluctuations in the system, and therefore “malfunctioning" in the information processing of the nets. Due to the finite number of the minima, the “random walk" reduces to a dynamics modeled by the, so-called, Pauli master equation. With some plausible assumptions, the set(s) of the Pauli master equations can be analytically solved. This way comes the main result of this paper: the quantum fluctuations due to the quantum-mechanical tunneling can be “minimized" if the “pattern"-formation is such that there are mutually “distant" groups of the “patterns", thus providing the “zone" structure of the “pattern" formation. This qualitative result can be considered as a basis of the efficient deterministic functioning of the associative neural nets. Received 15 July 1999  相似文献   

6.
We analyze the phenomenon of stochastic resonance in an Ising-like system on a small-world network. The system, which is subject to the combined action of noise and an external modulation, can be interpreted as a stylized model of opinion formation by imitation under the effects of a “fashion wave”. Both the amplitude threshold for the detection of the external modulation and the width of the stochastic-resonance peak show considerable variation as the randomness of the underlying small-world network is changed. Received 19 December 2001  相似文献   

7.
This erratum corrects a mistake in reference [E. Scalas, U. Garibaldi, S. Donadio, Eur. Phys. J. B 53, 267 (2006)]. In that paper, we needed an aperiodic version of the BDY game, but, in formula (1), we incorrectly presented a periodic transition matrix of period 2 in the special case of g = 2 agents. Here, we present the right aperiodic version.  相似文献   

8.
The “power of choice” has been shown to radically alter the behavior of a number of randomized algorithms. Here we explore the effects of choice on models of random tree growth. In our models each new node has k randomly chosen contacts, where k > 1 is a constant. It then attaches to whichever one of these contacts is most desirable in some sense, such as its distance from the root or its degree. Even when the new node has just two choices, i.e., when k = 2, the resulting tree can be very different from a random graph or tree. For instance, if the new node attaches to the contact which is closest to the root of the tree, the distribution of depths changes from Poisson to a traveling wave solution. If the new node attaches to the contact with the smallest degree, the degree distribution is closer to uniform than in a random graph, so that with high probability there are no nodes in the tree with degree greater than O(log log N). Finally, if the new node attaches to the contact with the largest degree, we find that the degree distribution is a power law with exponent -1 up to degrees roughly equal to k, with an exponential cutoff beyond that; thus, in this case, we need k ≫ 1 to see a power law over a wide range of degrees.  相似文献   

9.
With the aim of studying stochastic resonance (SR) in a double-well potential when the noise source has a spectral density of the form f (with varying κ), we have extended a procedure introduced by Kaulakys et al. (Phys. Rev. E 70, 020101 (2004)). In order to achieve an analytical understanding of the results, we have obtained an effective Markovian approximation that allows us to make a systematic study of the effect of such noise on the SR phenomenon. A comparison of the numerical and analytical results shows an excellent qualitative agreement indicating that the effective Markovian approximation is able to correctly describe the general trends.  相似文献   

10.
The steady state properties of a noise-driven bistable system are investigated when there are two different kinds of time delays existed in the deterministic and fluctuating forces respectively. Using the approximation of the probability density approach, the delayed Fokker-Planck equation is obtained. The stationary probability distribution (SPD) and the variance of the system are derived. It is found that the time delay τ in the deterministic force can reduce the fluctuations while the time delay β in the fluctuating force can enhance the fluctuations. Numerical simulations are presented and are in good agreement with the approximate theoretical results.  相似文献   

11.
The most general reaction-diffusion model on a Cayley tree with nearest-neighbor interactions is introduced, which can be solved exactly through the empty-interval method. The stationary solutions of such models, as well as their dynamics, are discussed. Concerning the dynamics, the spectrum of the evolution Hamiltonian is found and shown to be discrete, hence there is a finite relaxation time in the evolution of the system towards its stationary state.  相似文献   

12.
We investigate random walks on a lattice with imperfect traps. In one dimension, we perturbatively compute the survival probability by reducing the problem to a particle diffusing on a closed ring containing just one single trap. Numerical simulations reveal this solution, which is exact in the limit of perfect traps, to be remarkably robust with respect to a significant lowering of the trapping probability. We demonstrate that for randomly distributed traps, the long-time asymptotics of our result recovers the known stretched exponential decay. We also study an anisotropic three-dimensional version of our model. We discuss possible applications of some of our findings to the decay of excitons in semiconducting organic polymer materials, and emphasize the crucial influence of the spatial trap distribution on the kinetics. Received 23 July 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

13.
A system of particles is studied in which the stochastic processes are one-particle type-change (or one-particle diffusion) and multi-particle annihilation. It is shown that, if the annihilation rate tends to zero but the initial values of the average number of the particles tend to infinity, so that the annihilation rate times a certain power of the initial values of the average number of the particles remain constant (the double scaling) then if the initial state of the system is a multi-Poisson distribution, the system always remains in a state of multi-Poisson distribution, but with evolving parameters. The large time behavior of the system is also investigated. The system exhibits a dynamical phase transition. It is seen that for a k-particle annihilation, if k is larger than a critical value kc, which is determined by the type-change rates, then annihilation does not enter the relaxation exponent of the system; while for k < kc, it is the annihilation (in fact k itself) which determines the relaxation exponent.  相似文献   

14.
The concept of active Brownian particles is used to model a collective opinion formation process. It is assumed that individuals in community create a two-component communication field that influences the change of opinions of other persons and/or can induce their migration. The communication field is described by a reaction-diffusion equation, the opinion change of the individuals is given by a master equation, while the migration is described by a set of Langevin equations, coupled by the communication field. In the mean-field limit holding for fast communication we derive a critical population size, above which the community separates into a majority and a minority with opposite opinions. The existence of external support (e.g. from mass media) changes the ratio between minority and majority, until above a critical external support the supported subpopulation exists always as a majority. Spatial effects lead to two critical “social” temperatures, between which the community exists in a metastable state, thus fluctuations below a certain critical wave number may result in a spatial opinion separation. The range of metastability is particularly determined by a parameter characterizing the individual response to the communication field. In our discussion, we draw analogies to phase transitions in physical systems. Received 26 November 1999  相似文献   

15.
Far-from-equilibrium models of interacting particles in one dimension are used as a basis for modelling the stock-market fluctuations. Particle types and their positions are interpreted as buy and sel orders placed on a price axis in the order book. We revisit some modifications of well-known models, starting with the Bak-Paczuski-Shubik model. We look at the four decades old Stigler model and investigate its variants. One of them is the simplified version of the Genoa artificial market. The list of studied models is completed by the models of Maslov and Daniels et al. Generically, in all cases we compare the return distribution, absolute return autocorrelation and the value of the Hurst exponent. It turns out that none of the models reproduces satisfactorily all the empirical data, but the most promising candidates for further development are the Genoa artificial market and the Maslov model with moderate order evaporation.  相似文献   

16.
The Minority Game is adapted to study the “imitation dilemma”, i.e. the tradeoff between local benefit and global harm coming from imitation. The agents are placed on a substrate network and are allowed to imitate more successful neighbours. Imitation domains, which are oriented trees, are formed. We investigate size distribution of the domains and in-degree distribution within the trees. We use four types of substrate: one-dimensional chain; Erd?s-Rényi graph; Barabási-Albert scale-free graph; Barabási-Albert 'model A' graph. The behaviour of some features of the imitation network strongly depend on the information cost epsilon, which is the percentage of gain the imitators must pay to the imitated. Generally, the system tends to form a few domains of equal size. However, positive epsilon makes the system stay in a long-lasting metastable state with complex structure. The in-degree distribution is found to follow a power law in two cases of those studied: for Erd?s-Rényi substrate for any epsilon and for Barabási-Albert scale-free substrate for large enough epsilon. A brief comparison with empirical data is provided.  相似文献   

17.
Inspired by order-book models of financial fluctuations, we investigate the Interacting gaps model, which is the schematic one-dimensional system mimicking the order-book dynamics. We find by simulations the power-law tail in return distribution, power-law decay of volatility autocorrelation with exponent 0.5 and Hurst exponent close to 1/2. Surprisingly, when we make a mean-field approximation, i.e. replace the one-dimensional system by effectively infinite-dimensional one, we obtain analytically the return exponent 5/2, in perfect accord with one-dimensional simulations.  相似文献   

18.
Numerical simulations are reported on the Bonabeau model on a fully connected graph, where spatial degrees of freedom are absent. The control parameter is the memory factor f. The phase transition is observed at the dispersion of the agents power hi. The critical value fC shows a hysteretic behavior with respect to the initial distribution of hi. fC decreases with the system size; this decrease can be compensated by a greater number of fights between a global reduction of the distribution width of hi. The latter step is equivalent to a partial forgetting.  相似文献   

19.
20.
Using simple scaling arguments and two-dimensional numerical simulations of a granular gas excited by vibrating one of the container boundaries, we study a double limit of small 1-r and large L, where r is the restitution coefficient and L the size of the container. We show that if the particle density n0 and (1-r2)(n0 Ld) where d is the particle diameter, are kept constant and small enough, the granular temperature, i.e. the mean value of the kinetic energy per particle, 〈E 〉/N, tends to a constant whereas the mean dissipated power per particle, 〈D 〉/N, decreases like when N increases, provided that (1-r2)(n0 Ld)2 < 1. The relative fluctuations of E, D and the power injected by the moving boundary, I, have simple properties in that regime. In addition, the granular temperature can be determined from the fluctuations of the power I(t) injected by the moving boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号