首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass concentration and size distribution of aerosols in Tokaimura were investigated using a high-volume and a low-volume Andersen sampler. A difference was found using the two samplers: the concentration of total aerosols determined with the high-volume sampler is smaller than that of the low-volume sampler by 70-90% throughout the year. Compared to the high-volume sampler, low-volume sampler gave lower concentration for aerosols7μm, higher concentration for aerosols of 3.3-7.0μm and<1.1μm, though similar results for aerosols of 1.1-3.3μm. The low-volume sampler was found to have better separation efficiency and higher accuracy.  相似文献   

2.
Aerosol observation in Fengtai area, Beijing   总被引:1,自引:0,他引:1  
Measurements of aerosol number concentration and particulate matter with diameter less than 10 μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carbon (BC) was collected simultaneously from the ground and analyzed to determine the particulate matter components. To satisfy the interest in continuous monitoring of temporal and spatial distribution of aerosols, the relationship between extinction coefficient (visibility) measured by lidar remote sensing and the aerosol number concentration measured from the ground was derived by using statistical method. Vertical particle number concentration profile within the planetary boundary layer could be inversed through the lidar data as well as the statistical relation.  相似文献   

3.
Two-phase air–water flows in a microscale fractal-like flow network were experimentally studied and results were compared to predictions from existing macroscale void fraction correlations and flow regime maps. Void fraction was assessed using (1) two-dimensional analysis of high-speed images (direct method) and (2) experimentally determined using gas velocities (indirect method). Fixed downstream-to-upstream length and width ratios of 1.4 and 0.71, respectively, characterize the five-level flow network. Channels were fabricated in a 38 mm diameter silicon disk, 250 μm deep disk with a terminal channel width of 100 μm. A Pyrex top allowed for flow visualization. Superficial air and water velocities through the various branch levels were varied from 0.007 m/s to 1.8 m/s and from 0.05 m/s to 0.42 m/s, respectively. Two-phase flow regime maps were generated for each level of the flow network and are well predicted by the Taitel and Dukler model. Void fraction assessed using the indirect method shows very good agreement with the homogeneous void fraction model for all branch levels for the given range of flow conditions. Void fraction determined directly varies considerably from that assessed indirectly, showing better agreement with the void fraction correlation of Zivi.  相似文献   

4.
Opacities of four medium Z element plasmas (iron, nickel, copper and germanium) have been measured at the LULI-2000 facility in similar conditions: temperatures between 15 and 25 eV and densities between 2 and 10 mg/cm3, in a wavelength range (8–18 Å) including the strong 2p–3d structures.Two laser beams from the LULI facility were used in the nanosecond-picosecond configuration. The NANO-2000 beam (at λ = 0.53 μm) heated a gold hohlraum with an energy between 30 and 150 J with a duration of 0.6 ns. Samples covering half a hohlraum hole were thus radiatively heated. The picosecond pulse PICO-2000 beam (at λ = 1.053 μm) has been used to produce a short (about 10 ps) X-ray backlighter in order to reduce time variations of temperatures and densities during the measurement. A crystal high-resolution spectrometer was used as the main diagnostic to record at the same time the non-absorbed and the absorbed backlighter spectra. Radiation temperatures were measured using a broadband spectrometer. 1D and 2D simulations have been performed in order to estimate hydrodynamic plasmas parameters.The measured spectra have been compared with theoretical ones obtained using either the superconfiguration code SCO or the detailed term accounting code HULLAC. These comparisons allow us to check the modeling of the statistical broadening and of the spin-orbit splitting of the 2p–3d transitions and related effects such as the interaction between relativistic subconfigurations belonging to the same non-relativistic configuration.  相似文献   

5.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

6.
Lithium cobalt oxide (LiCoO2) was synthesized by carbon combustion synthesis (CCS) using carbon as fuel. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements showed that carbon combustion led to the formation of layered structure of LiCoO2 and the particle size could be controlled by carbon content. For the LiCoO2 sample prepared at 800℃ for 2 h, at molar ratio of C/Co = 0.5, the particle-size distribution fell in the narrow range of 3-5 μm. Electrochemical tests indicated this LiCoO2 sample delivered an initial discharge capacity of 148 mAh/g with capacity retention rate higher than 97% after 10 cycles.  相似文献   

7.
Effects of microchannel geometry on pulsed flow mixing   总被引:1,自引:0,他引:1  
Although the mixing of reagents is often crucial in many microfluidic devices, good mixing in these laminar, low Reynolds number, flows remains a challenge. It was shown in Refs. [Glasgow, I., Aubry, N., 2003. Lab on a Chip 3, p. 114; Glasgow, I., Batton, J., Aubry, N., 2004. Lab on a Chip 4, p. 558] that pulsing can induce mixing at the confluence of two inlet microchannels in an efficient manner. In this paper, we show that this mixing is affected by both the geometry of the confluence and the inclusion of features in the channels, which induce secondary flow. More specifically, we study mixing in 200 μm wide by 120 μm deep channels, at flow rates from 48 nl s−1 to 4.8 μl s−1, corresponding to Reynolds numbers of 0.3–30. For the parameter values studied, the pulsed flow technique is more effective at mixing than the secondary flow induced by the channel geometry features, and combining both methods leads to even better mixing. In addition, pulsing the reagents such that they pass multiple times through the spatial features, which induce secondary flow leads to mixing over shorter distances.  相似文献   

8.
Magnesium alloys AE42 and AZ91 reinforced with 23 vol.% carbon short fibers (Df ≈ 7 μm, Lf ≈ 100 μm) were tested under quasi-static loading. The carbon fibers were quasi-isotropically distributed in the horizontal plane (reinforced plane) of the casting. Compression and tensile tests were carried out on both the matrix alloys and the composites at temperatures between 20 °C and 300 °C. Specimens were machined to be loaded either parallel or normal to the reinforced plane. Due to the reinforcement, the compression yield stress of the composite AE42-C increased to a value approximately three-fold greater than the yield strength of the matrix; for composite AZ91-C this parameter was approximately 2.5-fold greater than that of the AZ91 matrix. The improvement in tensile strength was less than that in compression, which could be related to early tensile fracture through decohesion at the matrix–fiber interface, as detected by SEM investigations conducted on failed tensile specimens. Flow curves for the matrix alloys at different temperatures were described by a modified Kocks–Mecking material law. An idealization of a 2-D mesomodel was used for finite-element simulation of the mechanical behavior of the composites. The fibers were first considered as elastic bodies and the behavior of the matrix material was set according to the material law determined from the flow curves for the matrix alloys. Other calculations were carried out by considering elasto-plastic behavior of the fibers for application of a failure initiation technique to simulate the behavior of the composite materials beyond the ultimate stress.  相似文献   

9.
In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000 μm (length) and 0.1–1 μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces.  相似文献   

10.
This work is concerned with the surface treatment (ion nitriding) of fretting fatigue and fatigue resistance of 34CrNiMo6. Tests are made on a servo-hydraulic machine under tension for both treated and non-treated specimens. The test parameters involve the applied displacements δ±80–±170 μm; fretting pressure σn=1000–1400 MPa; fatigue stress amplitude σa=380–680 MPa and stress ratio R=−1. The ion nitriding process improves both fatigue and fretting fatigue lives. Subsurface crack initiation from internal discontinuities was found for ion-nitrided specimens.  相似文献   

11.
A novel photoelectrochemical biosensor incorporating nanosized CdS semiconductor crystals with enzyme to enhance photochemical reaction has been investigated. CdS nanoparticles were synthesized by using dendrimer PAMAM as inner templates. The CdS nanoparticles and glucose oxidase (GOD) were immobilized on Pt electrode via layer-by-layer (LbL) technique to fabricate a biological-inorganic hybrid system. Under ultraviolet light, the photo-effect of the CdS nanoparticles showed enhancement of the biosensor to detect glucose. Pt nanoparticles were mixed into the Nation film to immobilize the CdS/enzyme composites and to improve the charge transfer of the hybrid. Experimental results demonstrate the desirable characteristics of this biosensing system, e,g. a sensitivity of 1.83 μA/(mM cm^2), lower detection limit (1 μM), and acceptable reproducibility and stability,  相似文献   

12.
The dynamics of inkjet droplet of non-Newtonian fluid on glass substrates was investigated experimentally and compared with that of Newtonian fluid. The non-Newtonian fluids used here were 100 ppm solutions of polyethylene oxide (300k, 600k and 900k) dissolved in the 1:1 mixture of water and glycerin. Weber number (We) was 2–35 and Ohnesorge number was fixed at 0.057 ± 0.003. The wettability of solid substrate was also varied. The diameter of inkjet droplets in the present study was about 50 μm and was much smaller than the size of the previous studies on drop impact. Due to the development of a thin and long thread at the rear of the main drop the jetting window of polymer solution was much narrower than that of Newtonian fluid, and hence the experimental range of Weber number was restricted. The impact scenarios of non-Newtonian inkjet droplets were found to be qualitatively different from those of Newtonian droplets during the receding phase while they were almost the same as the Newtonian fluid case during the kinematic phase. The spreading diameter at the equilibrium was well correlated with the modified Weber number (We′ = We/(1 − cos θeq)) as in the case of Newtonian fluid, where θeq is the equilibrium contact angle. The similarity or disparity between the Newtonian and non-Newtonian cases was discussed considering the conformation of polymer chains during each stage of drop deformation.  相似文献   

13.
In the present paper the results of investigations in flashing flow behind a sudden constriction in vertical upflow are described. Flow visualization, laser-Doppler and phase-Doppler anemometry have been used to measure local bubble and fluid velocities, local bubble sizes and void fractions. The measurements were performed in the midplane of a two-dimensional channel with a 2:1 stepwise constriction.It was found that bubble nucleation takes place in the recirculation zone immediately behind the constriction, which is the location of the lowest static pressure. These bubbles are transported downstream by the mean flow field, while undergoing further growth. No additional nucleation was observed downstream of the recirculation zone. A periodic, cloudwise behaviour of the bubble formation was found which could be explained by the interaction between the bubble growth and the mean flow field. This interaction results in strong disturbances of the mean flow field, which show up as an increase of the fluctuating bubble velocity by a factor of 3 compared to single-phase measurements in a region of 10 step heights behind the constriction. However, these fluctuations appear more like a periodic change in the mean velocity rather than a higher turbulence level. The measured arithmetic mean bubble diameters rise from approx. 50 μm in the recirculation region to about 70–80 μm 50 step heights downstream. Maximum local bubble number density and void fraction were found to be 160001/cm3 and 0.8%, respectively.  相似文献   

14.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

15.
An experimental study was made on convective heat and mass transfer from a horizontal heated cylinder in a downward flow of air-water mist at a blockage ratio of 0.4. The measured local heat transfer coefficients agree fairly well with the authors' numerical solutions obtained previously for the front surface of a cylinder over the ranges mass flow ratio 0–4.5×10−2, a temperature difference between the cylinder and air 10–43 K, gas Reynolds number (7.9–23)×103, Rosin-Rammler size parameter 105–168 μm, and dispersion parameter 3.4–3.7. Heat transfer augmentation, two-pahse to single-phase of greater than 19 was attained at the forward stagnation point. For heat transfer in the rear part of the cylinder, an empirical formula is derived by taking into account the dimensionless governing variables, that is, coolant-feed and evaporation parameters.  相似文献   

16.
Frost formation on heat exchangers is an undesirable phenomenon that almost inevitably exists in refrigeration and cryogenic equipment; it can significantly affect the thermal efficiency of heat exchangers and reduce the performance of the refrigeration system. In this paper, a newly developed anti-frosting paint was used to spray on the heat exchanger fins with coating thickness of 30 μm, and a series of comparative experiments were conducted to test its effectiveness in restraining frost deposition under different repeated frosting–defrosting cycles. The experimental results demonstrated that the anti-frosting time of the coated heat exchanger was substantially longer when compared with the uncoated heat exchanger. In addition, there was no appreciable frost deposition on the coated fins surface during the whole test.  相似文献   

17.
In this paper, the online Weather Research and Forecasting and Chemistry (WRF/CHEM) model, coupled with urban canopy (UCM) and biogenic-emission models, is used to explore impacts of urban expansion on secondary organic aerosols (SOA) formation. Two scenarios of urban maps are used in WRF/CHEM to represent early 1990s (pre-urbanization) and current urban distribution in the Pearl River Delta (PRD). Month-long simulation results using the above land-use scenarios for March 2001 show: (1) urbanization can increase monthly averaged temperatures by about 0.63 ℃, decrease monthly averaged 10-m wind speeds by 38%, increase monthly averaged boundary-layer depths by 80 m, and decrease monthly aver- aged water mixing ratio by 0.2g/kg. (2) Changes in meteorological conditions can result in detectable concentration changes of NOx, VOC, O3 and NO3 radicals. Urbanization decreases surface NOx and VOC concentrations by a maximum of 4 ppbv and 1.5 ppbv, respectively. Surface O3 and NO3 radical concentrations over major cities increase by about 2-4 ppbv and 4-12 pptv, respectively; areas with increasing O3 and NO3 radical concentrations generally coincide with the areas of temperature increase and wind speed reduction where NOx and VOC decrease. (3) Urbanization can induce 9% increase of SOA in Foshan, Zhongshan and west Guangzhou and 3% decrease in Shenzhen and Dongguan. Over PRD major cities, SOA from Aitken mode reduces by 30% but with more than 70% SOA from accumulate mode. Urbanization has stronger influence on SOA formation from Aitken mode. (4) Over the PRD, 55-65% SOA comes from aromatics precursors. Urbanization has strongest influence on aromatics precursors to produce SOA (14% increase), while there is less influence on alkane precursors. Alkene precursors have negative contribution to SOA formation under urbanization situation.  相似文献   

18.
1. Introduction Aerosols play an important role in affecting the atmos-pheric quality, cloud formation and precipitation, influenc-ing the energy balance of the earth-atmosphere system (Sokolik et al., 2001; Cao et al., 2003), although their concentration is very low. Recently, studies on atmospheric aerosols and their radiative forcing have been the inter-esting research area in global and/or regional environment and climate changes (Zhang et al., 2001; Menon et al., 2002). Among them, much…  相似文献   

19.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

20.
Four animal drawn vehicle (ADV) tyres of 5.00–19, 6.00–19, 7.00–19 and 8.00–19 sizes were tested in sand under various but controlled conditions in an indoor soil bin. A tyre test carriage with four-bar parallel linkage was developed for accommodating a single wheel of different sizes. Performance tests were conducted at five levels of inflation pressure and load. The sand compaction level was varied in the range of 3.4–4.5 MPa/m and forward speed of the test carriage was maintained at 3.1 km/h. Performance of the tyres 7.00–19 and 8.00–19 was identical and offered less rolling resistance as compared to other tyres. However, their use in camel carts may not be recommended beyond the payload of 6 kN on single wheel with inflation pressure and sand compaction range of 172–379 kPa and 3.4 –4.5 MPa/m, respectively. Based on the experimental results, empirical models were developed to predict the performance of tyres. The accuracy of prediction of the developed empirical models was compared with that of existing semi-empirical approaches. Model with sand mobility number considered relatively simple and convenient to use in the field and yields reasonably good prediction for rolling resistance and sinkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号