首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements of species volume concentration and velocities in a helium/air binary gas jet with a jet Reynolds number of 4,300 and a jet-to-ambient fluid density ratio of 0.64 were carried out using a laser/hot-wire technique. From the measurements, the turbulent axial and radial mass fluxes were evaluated together with the means, variances and spatial gradients of the mixture density and velocity. In the jet near field (up to ten diameters downstream of the jet exit), detailed measurements of u/ 0 U 0, v/ 0 U0, u v/ 0 U 0 2 , u 2 / 0 U 0 2 and v 2 / 0 U 0 2 reveal that the first three terms are of the same order of magnitude, while the last two are at least one order of magnitude smaller than the first three. Therefore, the binary gas jet in the near field cannot be approximated by a set of Reynolds-averaged boundary-layer equations. Both the mean and turbulent velocity and density fields achieve self-preservation around 24 diameters. Jet growth and centerline decay measurements are consistent with existing data on binary gas jets and the growth rate of the velocity field is slightly slower than that of the scalar field. Finally, the turbulent axial mass flux is found to follow gradient diffusion relation near the center of the jet, but the relation is not valid in other regions where the flow is intermittent.  相似文献   

2.
The objective of this work is to assess the performances of different turbulence models in predicting turbulent diffusion flames in conjunction with the flamelet model.The k– model, the Explicit Algebraic Stress Model (EASM) and the k– model withvaried anisotropy parameter C (LEA k– model)are first applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence models. Following this, theyare used to simulate the CH4/H2 bluff-body flame studied by the University of Sydney/Sandia.The numerical results are compared to experimental values of the mixture fraction, velocity field, temperature and constituent mass fractions.The comparisons show that the overall result depends on the turbulence model used, and indicate that theEASM and the LEA k– models perform better than the k– model and mimic most of the significant flow features.  相似文献   

3.
4.
In this paper, results from a combined network/averaging study are presented. The emphasis is placed on understanding the flow phenomena, rather than predicting results for real porous media. Idealized porous media, consisting of networks of tubes, are used to interpret two of the terms in the averaged momentum equation. In particular, it is demonstrated that the pressure term accounts for microscopic cross flow, and that the magnitude of this term is proportional to the variation of the cross-sectional areas of the tubes in the macroscopic flow direction. For one-dimensional macroscopic flow in these idealized porous media, the agreement of network theory and averaging theory permeabilities depends on areosity (a term related to the area open to flow in a direction) remaining constant in the macroscopic flow direction; it may vary in other directions.  相似文献   

5.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

6.
Numerical simulations are used to study laminar vortex ring formation under the influence of background flow. The numerical setup includes a round-headed axisymmetric body with an opening at the posterior end from which a column of fluid is pushed out by a piston. The piston motion is explicitly included into the simulations by using a deforming mesh. A well-developed wake flow behind the body together with a finite-thickness boundary layer outside the opening is taken as the initial flow condition. As the jet is initiated, different vortex evolution behavior is observed depending on the combination of background flow velocity to mean piston velocity () ratio and piston stroke to opening diameter () ratio. For low background flow () with a short jet (), a leading vortex ring pinches off from the generating jet, with an increased formation number. For intermediate background flow () with a short jet (), a leading vortex ring also pinches off but with a reduced formation number. For intermediate background flow () with a long jet (), no vortex ring pinch-off is observed. For high background flow () with both a short () and a long () jet, the leading vortex structure is highly deformed with no single central axis of fluid rotation (when viewed in cross-section) as would be expected for a roll-up vortex ring. For , the vortex structure becomes isolated as the trailing jet is destroyed by the opposite-signed vorticity of the background flow. For , the vortex structure never pinches off from the trailing jet. The underlying mechanism is the interaction between the vorticity layer of the jet and the opposite-signed vorticity layer from the initial wake. This interaction depends on both and . A comparison is also made between the thrust generated by long, continuous jets and jet events constructed from a periodic series of short pulses having the same total mass flux. Force calculations suggest that long, continuous jets maximize thrust generation for a given amount of energy expended in creating the jet flow. The implications of the numerical results are discussed as they pertain to adult squid propulsion, which have been observed to generate long jets without a prominent leading vortex ring. PACS 02.60.Cb, 47.32.cf, 47.32.cb, 47.20.Ft, 47.63.M-  相似文献   

7.
In the first part of our paper, we have extended the concepts of the classical convolution and the convolution scalar product given by I. Hlaváck and presented the concepts of the convolution vector and the convolution vector scalar product, which enable us to extend the initial value as well as the initial-boundary value problems for the equation with the operator coefficients to those for the system of equations with the operator coefficients.In the second part of this paper, based on the concepts of the convolution vector and the convolution vector scalar product, two fundamental types of reciprocal theorems of the non-local micropolar linear elastodynamics for inhomogeneous and anisotropic solids are derived.In the third part of this paper, based on the concepts and results in the first and second parts as well as the Lagrange multiplies method which is presented by W. Z. Chien, four main types of variational principles are given for the nonlocal micropolar linear elastodynamics for inhomogeneous and anisotropic solids. These are the counterparts of the variational principles of Hu-Washizu type, Hellinger-Reissner type and Gurtin type in classical elasticity as well as Hlaváck type and Iesan type in local micropolar and nonlocal elasticity. Finally, we have proved the equivalence of the last two main variational principles which are given in this paper.  相似文献   

8.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

9.
The heat transfer by natural convection in vertical and inclined rectangular enclosures with fins attached to the heated wall is numerically studied using the energy and Navier-Stokes equations with the Boussinesq approximation. The range of study covers 104Ra2×105,A=H/L=2.5 to ,B=l/L=0 to 1,C=h/L=0.25 to 2 andPr=0.72. The inclination angle from the vertical was from 0 to 60 degree. The variation of the local Nusselt numberNu loc along the enclosure height and the average Nusselt numberNu as a function ofRa are computed. Streamlines and isotherms in the enclosure are produced. The results show thatB is an important parameter affecting the heat transfer through the cold wall of the enclosure. The heat transfer is reduced for decreasingC and it passes from a maximum for an inclination angle. The results show that the heat transfer can generally be reduced using appropriate geometrical parameters in comparison with a similar enclosure without fins.Die Wärmeübertragung bei freier Konvektion in vertikalen und geneigten rechtwinkligen Behältern mit Rippen an den beheizten Wänden wird unter Verwendung der Energie- und Navier-Stokes-Gleichungen sowie der Boussinesq-Approximation numerisch untersucht. Der Bereich der Studie liegt bei 104Ra2·105,A=H/L=2,5 bis ,B=l/L=0 bis 1,C=h/L=0,25 bis 2 undPr=0.72. Der Neigungswinkel der Wand liegt zwischen 0 und 60 Grad. Die Veränderung der lokalen Nusselt-Zahl entlang der Höhe der Behälterwände und die mittlere Nusselt-Zahl in Abhängigkeit derRa-Zahl werden berechnet. Strömungslinien und Isothermen werden im Behälter erzeugt. Die Ergebnisse zeigen, daßB ein wichtiger Parameter für die Wärmeübertragung an der nicht beheizten Wand des Behälters ist. Die übertragene Wärmemenge verringert sich mit abnehmendemC und durchschreitet ein Maximum für eine bestimmte Wandneigung. Die Ergebnisse zeigen, daß im Vergleich zu einer Anordnung ohne Rippen, die Wärmeübertragung bei geeigneten geometrischen Parametern allgemein reduziert werden kann.  相似文献   

10.
Presented at the International Conference on Contemporary Mathematical Problems in Mechanics and Their Applications (Moscow, November 11–15, 1987).  相似文献   

11.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

12.
In the paper anomalous diffusion appearing in a porous medium composed of two porous components of considerably different diffusion characteristics is examined. The differences in diffusivities are supposed to result either from two medium types being present or from variations in pore size (double porosity media). The long-tail effect is predicted using the homogenization approach based on the application of multiple scale asymptotic developments. It is shown that, if the ratio of effective diffusion coefficients of two porous media is of the order of magnitude smaller or equal O( 2), where is a homogenization parameter, then the macroscopic behaviour of the composite may be affected by the presence of tail-effect. The results of the theoretical analysis were applied to a problem of diffusion in a bilaminate composite. Analytical calculations were performed to show the presence of the long-tail effect in two particular cases.Notations c i the concentration of chemical species in water within the medium i - D i the effective diffusion coefficient for the medium i - D ij eff the macroscopic (or effective) diffusion tensor in the composite - ERV the elementary representative volume - h the thickness of the period - l a chracteristic length of the ERV or the periodic cell - L a characteristic macroscopic length - n the volumetric fraction of the material 2 - 1–n the volumetric fraction of the material 1 - N the unit vector normal to - t the time variable - x the macroscopic (or slow) space variable - y the microscopic (or fast) space variable - c 1c ,C 2c ,D 1c ,D 2c the characteristic quantities - T,T 1L ,T 2L ,T 1l ,T 2l the characteristic times - c 1 * ,c 2 * ,D 1 * ,D 2 * ,t * the non-dimensional variables - the homogenization parameter - 1 the domain occupied by the material 1 - 2 the domain occupied by the material 2 - the interface between the domains 1 and 2 - the total volume of the periodic cell - /xi the gradient operator - the gradient operator  相似文献   

13.
Equations are obtained for two-dimensional transonic adiabatic (nonisoenergetic and nonisoentropic) vortex flows of an ideal gas, using the natural coordinates (=const is the family of streamlines, and =const is the family of lines orthogonal to them). It is not required that the transonic gas flow be close to a uniform sonic flow (the derivation is given without estimates). Solutions are found for equations describing vortex flows inside a Laval nozzle and near the sonic boundary of a free stream.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–109, September–October, 1973.  相似文献   

14.
This study considers numerical simulations of the combustions of hydrogen and various hydrocarbons with air, including 21% oxygen and 79% nitrogen, in a burner and the numerical solution of the local entropy generation rate due to the high temperature and velocity gradients in the combustion chamber. The combustion is simulated for the fuel mass flow rates providing the same heat transfer rate to the combustion chamber in the each fuel case. The effects of (only in the case of H2 fuel) and equivalence ratio () on the combustion and entropy generation rate are investigated for the different (from 5,000 to 10,000 W) and s (from 0.5 to 1.0). The numerical calculation of combustion is performed individually for all cases with the help of the Fluent CFD code. Furthermore, a computer program has been developed to numerically calculate the volumetric entropy generation rate distributions and the other thermodynamic parameters by using the results of the calculations performed with the FLUENT code. The calculations bring out that the maximum reaction rates decrease with the increase of (or the decrease of ). The large positive and negative temperature gradients occur in the axial direction, nonetheless, the increase of significantly reduces them. The calculations bring out also that with the increase of from 0.5 to 1.0, the volumetric local entropy generation rates decrease about 4% and that the merit numbers increase about 16%.  相似文献   

15.
Using a quasi three-dimensional instantaneous measurement technique, which combines particle tracking velocimetry (PTV) with volume scanning, first quantitative experimental results of the unsteady and asymmetric interior region of vortex breakdown were obtained. The study was carried out in a low speed flow through a cylindrical tube. A vortex was generated by a set of guidevanes and subjected to an adverse pressure gradient causing its breakdown. By scanning a pulsed illuminated planar laser light sheet, a set of meridional and azimuthal cuts of the flow was obtained. With PTV the recorded particle paths in the cuts were processed in order to obtain the instantaneous two-dimensional velocity field, mean streamlines and vorticity distribution. Moreover, the three-dimensional shape of the appearing breakdown, visualized with fluorescent dye, was reconstructed from the cuts. The results revealed that the shape of the bubble nearly equals the streamsurface of the stagnation point. According to the conditions in the water tunnel a single tilted vortex ring at the open rear part of the bubble dominates the interior flow structure of the bubble as first noted by Sarpkaya (1971). The vortical flow is bulged over the bubble, restored and intensified at the lower end. The gathered data lead to the conclusion that the vortex axis remains parallel to the centerline.  相似文献   

16.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

17.
Twolayer miscible flow above an uneven bottom is considered. A mathematical model in the shallowwater approximation is constructed for the development of a turbulent layer between homogeneous layers of different density in a twolayer channel flow over a local obstacle. The influence of the mixing process on the formation of an initial segment of the steadystate densitystratified flow on the leeward side of the obstacle is studied.  相似文献   

18.
The flow structure behind wire grids is studied for flows with a low subsonic velocity, and the effect of grids on the boundarylayer flow structure is considered. It is shown that the meanvelocity inhomogeneity induced by the grid does not disappear until a distance of 925 calibers downstream of the grid is reached. Liquidcrystal thermography combined with hotwire measurements made it possible to find the source of steady largescale streamwise vortex structures in the boundary layer on a wedge and on an airfoil and to determine the parameters of these structures.  相似文献   

19.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

20.
Summary This paper is devoted to a study of the flow of a second-order fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) over a finite rotating disc enclosed within a coaxial cylinderical casing. The effects of the second-order terms are observed to depend upon two dimensionless parameters 1 and 2. Maximum values 1 and 2 of the dimensionless radial distances at which there is no recirculation, for the cases of net radial outflow (m>0) and net radial inflow (m<0) respectively, decrease with an increase in the second-order effects [represented by T(=1+2)]. The velocities at 1 and 2 as well as at some other fixed radii have been calculated for different T and the associated phenomena of no-recirculation/recirculation discussed. The change in flow phenomena due to a reversal of the direction of net radial flow has also been studied. The moment on the rotating disc increases with T.Nomenclature , , z coordinates in a cylindrical polar system - z 0 distance between rotor and stator (gap length) - =/z 0, dimensionless radial distance - =z/z 0, dimensionless axial distance - s = s/z0, dimensionless disc radius - V =(u, v, w), velocity vector - dimensionless velocity components - uniform angular velocity of the rotor - , p fluid density and pressure - P =p/(2 z 02 2 , dimensionless pressure - 1, 2, 3 kinematic coefficients of Newtonian viscosity, elastico-viscosity and cross-viscosity respectively - 1, 2 2/z 0 2 , resp. 3/z 0 2 , dimensionless parameters representing the ratio of second-order and inertial effects - m = , mass rate of symmetrical radial outflow - l a number associated with induced circulatory flow - Rm =m/(z 01), Reynolds number of radial outflow - R l =l/(z 01), Reynolds number of induced circulatory flow - Rz =z 0 2 /1, Reynolds number based on the gap - 1, 2 maximum radii at which there is no recirculation for the cases Rm>0 and Rm<0 respectively - 1(T), 2(T) 1 and 2 for different T - U 1(T) (+) = dimensionless radial velocity, Rm>0 - V 1(T) (+) = , dimensionless transverse velocity, Rm>0 - U 2(T) (–) = , dimensionless radial velocity, Rm=–Rn<0, m=–n - V 2(T) (–) = , dimensionless transverse velocity, Rm<0 - C m moment coefficient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号