首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于广义边界条件Euler-Bernoulli梁,采用相对描述方式建立了可描述梁整体运动和相对变形的几何非线性及其线性化动力学模型,应用线性变换得到了该类梁的线性经典动力学方程,得到了广义边界条件下梁的横向振动代数特征方程、特征函数及特征值的退化表达式.算例分析了边界小扰动对固支-固支梁横向振动特征的影响规律.  相似文献   

2.
具有稳定数值解的三维谐振子   总被引:1,自引:1,他引:0  
谐振子广泛应用于物理系统的描述和物理现象的数值模拟。由于二维或三维谐振子对于系统参数、初始条件和边界条件的高度敏感性,很多物理过程的动力学模拟都会出现数值解不稳定的现象。近年来发展的无网格法、物质点法和近场动力学法等数值模拟方法均绕开了对固体材料固有构形的量化描述。本文引入了定常耗散项和弹簧耗散项,考虑随机微扰效应,提出了一种三维耗散谐振子,构建了基于蛙跳法和边界松弛技术的数值积分算法。应用三维谐振子构建了耗散型弹簧摆、简化弦和简化梁三个模型,设定了13个定解问题进行动力学模拟。数值试验结果表明,三维谐振子是稳定的。基于简化弦模型,模拟了拉弦、放弦和重弦三个有界弦振动问题;其中,拉弦和放弦问题成功模拟了有界弦的三维振形;重弦问题模拟再现了悬链线在水平向的微幅振荡现象。基于简化梁模型,模拟了三维梁的拉伸、剪切和扭转行为,验证了三维谐振子对于非线性大变形问题动力学模拟的描述能力,及其对外部作用的高速响应能力。本文方法可以为弦振动问题和材料力学非线性大变形问题的动力学模拟提供一条可行的实现途径。  相似文献   

3.
主要研究裂纹对梁结构动力特性的影响规律,进而为含裂纹梁结构状态监测提供理论依据。首先,对裂纹影响区域进行分析,建立含裂纹梁二维接触非线性有限元模型,阐明含裂纹梁具有拉压不同刚度的静力特性;其次,通过对机理模型的分析,指出拉压不同刚度会引起轴向与弯曲的耦合振动;然后,通过非线性动力学分析方法研究其动力特性,观察到含裂纹梁在冲击荷载下会产生轴向与弯曲的耦合振动现象,并指出这种轴向与弯曲耦合振动的一个重要特征是轴向振动频谱图中含有弯曲振动基频的两倍频成分;最后,通过引入非线性弹簧建立一种新颖的含裂纹梁简化动力学模型,通过与精细有限元分析对比,验证了模型的合理性。该简化动力学模型将接触非线性问题转换为材料非线性问题,避免了费时的接触非线性动力学求解过程。  相似文献   

4.
一类刚-柔耦合系统的建模与稳定性研究   总被引:35,自引:2,他引:35  
肖世富  陈滨 《力学学报》1997,29(4):439-447
对于由中心刚体带有柔性梁附件组成的这一类简单刚 柔耦合系统,目前文献广泛采用的Euler Bernouli梁模型中考虑的刚 柔运动耦合项有严重的缺陷.本文对于物理本构关系线性的有限变形梁,分别采用微元法和变分法建立了该系统大挠度非线性动力学方程组.本文使用严格的方法来研究此非线性耦合动力学模型,采用能量 动量矩组合方法构成Liapunov函数,严格证明了此非线性系统平凡解的积分范数稳定性以及具有鲜明物理意义的最大模范数稳定性.本文对文献中引用的三类线性化模型,采用假设模态法,对中心刚体匀速转动时梁的振动作了数值仿真,进一步验证了本文的结论.上述结果,对选择刚 柔耦合系统正确的动力学模型是有益的.  相似文献   

5.
6.
Aiming at the oil film instability of the sliding bearing at high speeds, a rotor test rig is built to study the non-linear dynamic behaviours caused by the first- and second-mode instability. A lumped mass model (LMM) of the rotor system considering the gyroscopic effect is established, in which the graphite self-lubricating bearing and the sliding bearing are simulated by a spring–damping model and a nonlinear oil film force model based on the assumption of short bearings, respectively. Moreover, a finite element model is also established to verify the validity of the LMM. The researches focus on the effects of two loading conditions (the first- and second-mode imbalance excitation) on the onset of instability and nonlinear responses of the rotor-bearing system by using the amplitude–frequency response, spectrum cascade, vibration waveform, orbit, and Poincaré map. Finally, experiments are carried out on the test rig. Simulation and experiment all show that oil film instability can excite complicated combination frequency components about the rotating frequency and the first-/second-mode whirl/whip frequency.  相似文献   

7.
非线性振动一种稳定的模糊控制方法研究   总被引:2,自引:0,他引:2  
由于非线性振动系统的非线性本质,在于传统控制理论的线性控制器用于非线性振动控制效果不佳。本文针对非线性振动系统提出了一种模糊自适应滑模控制方案。  相似文献   

8.
L. Dai  L. Sun  C. Chen 《Nonlinear dynamics》2014,77(4):1677-1692
Microbeams are widely seen in micro-electro-mechanical systems and their engineering applications. An active control strategy based on the fuzzy sliding mode control is developed in this research for controlling and stabilizing the nonlinear vibrations of a micro-electro-mechanical beam. An Euler-Bernoulli beam with a fixed-fixed boundary is employed to represent the microbeam, and the geometric nonlinearity of the beam and loading nonlinearity from the electrostatic force are considered. The governing equation of the microbeam is established and transformed into a multi-dimensional dynamic system with the third-order Galerkin method. A stability analysis is provided to show the necessity of the derived multi-dimensional dynamic system, and a chaotic motion is discovered. Then, a control approach is proposed, including a control strategy and a two-phase control method. For describing the application of the control approach developed, control of a chaotic motion of the microbeam is presented. The effectiveness of the active control approach is demonstrated via controlling and stabilizing the nonlinear vibration of the microbeam.  相似文献   

9.
Zhao  Yuhao  Du  Jingtao  Chen  Yilin  Liu  Yang 《Nonlinear dynamics》2023,111(10):8947-8971

Some complex engineering structures can be modeled as multiple beams connected through coupling elements. When the coupling element is elastic, it can be simplified as a mass-spring system. The existing studies mainly concentrated on the double-beam coupled through elastic connectors, where the connector is simplified as the equivalent linear stiffness element or linear mass-spring system. Furthermore, many researches ignore rotational boundary restraints in analyzing dynamic behavior of the double-beam connected through elastic connectors, limiting their engineering generality. Considering the above limitations, this study attempts to employ the cubic nonlinear stiffness in the coupling mass-spring system and study the potential application of the mass-spring system that is nonlinear on the vibration control of the double-beam system. Using the variational method and the generalized Hamiltonian method build the corresponding system’s governing functions. Applying the Galerkin truncation method (GTM) obtains the dynamic behavior of the double-beam connected through a mass-spring system that is nonlinear. According to this study, the change of the mass-spring system that is nonlinear significantly influences the dynamic behavior of the double-beam system, where the complex dynamic behavior occurs under certain parameters of the mass-spring system that is nonlinear. Suitable parameters of the mass-spring system that is nonlinear are good at the vibration suppression at the boundary of the vibration system. Furthermore, the mass-spring system that is nonlinear can change the characteristics of the double-beam system’s kinetic energy transfer. For the vibration model established in this work, a quasi-periodic vibration state can be regarded as a sign of the occurrence of the targeted energy transfer of the double-beam connected through a mass-spring system that is nonlinear.

  相似文献   

10.
The nonlinear equations of motion of planar bending vibration of an inextensible viscoelastic carbon nanotube (CNT)-reinforced cantilevered beam are derived. The viscoelastic model in this analysis is taken to be the Kelvin–Voigt model. The Hamilton principle is employed to derive the nonlinear equations of motion of the cantilever beam vibrations. The nonlinear part of the equations of motion consists of cubic nonlinearity in inertia, damping, and stiffness terms. In order to study the response of the system, the method of multiple scales is applied to the nonlinear equations of motion. The solution of the equations of motion is derived for the case of primary resonance, considering that the beam is vibrating due to a direct excitation. Using the properties of a CNT-reinforced composite beam prototype, the results for the vibrations of the system are theoretically and experimentally obtained and compared.  相似文献   

11.
12.
离心机振动台复合环境实验系统的隔振研究   总被引:2,自引:0,他引:2  
离心 振动复合环境实验系统由振动台安装在离心机机臂上构成 ,离心机提供线加速度环境 ,振动台提供振动环境 ,在振动台与离心机臂之间容易产生耦合 ,影响复合环境的实现。本文考虑将振动台垂臂安装于离心机臂上 ,根据模态试验结果 ,将离心机臂简化为单自由度系统 ,建立了振动台系统数学模型 ,分析了振动台与离心机机臂间的连接刚度和连接阻尼对隔振的影响 ,并设计了减振器 ,分析表明具有较好的隔振效果  相似文献   

13.
Attitude tracking control of flexible spacecraft with large amplitude slosh   总被引:1,自引:0,他引:1  
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli–Euler beam, and the assumed modal method is employed.A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics,liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.  相似文献   

14.
Yuanbin Wang  Hu Ding  Li-Qun Chen 《Meccanica》2018,53(10):2525-2542
In this paper, a higher order model equation is presented for an axially accelerating beam. Based on a new kinematic frame of the beam and continuum mechanics theory, the coupled governing equations of nonlinear vibration for axially accelerating beam are obtained with the aid of the generalized Hamilton principle. The governing equations take into account the characteristic of the material, the shear strain, the rotation strain and the effect of longitudinally varying tension due to the axial acceleration. The equations are decoupled into a nonlinear partial-integro-differential equations when the transverse nonlinear vibration is small. For the principal parametric resonances, the steady-state frequency responses are obtained by the multiple scales method. The stable and unstable interval are analyzed for the trivial and nontrivial steady-state response. Effects of the system parameters on the amplitude have been investigated. The results show that the material parameter (i.e, in-plane Poisson ratio) has a significant effect on the amplitude and the nonlinear vibration behavior type. The amplitude decrease with the growth of the in-plane Poisson ratio. The total potential energy has play a very important role in determining the amplitude of frequency response according to model analysis. Lastly, comparisons among the analytical solutions and numerical solutions are made and good agreements for the amplitude are found.  相似文献   

15.
李韶华  冯桂珍  丁虎 《力学学报》2021,53(9):2554-2568
轮毂电机驱动电动汽车的簧下质量大, 使得轮胎动载荷增加, 且电机激励进一步加剧车轮振动. 同时, 轮胎与路面单点接触的简化模型, 其动力学计算结果与实际存在差别. 鉴于此, 考虑电机的电磁激励、胎路多点接触和非线性地基, 建立了电动汽车?路面系统机电耦合动力学模型, 通过Galerkin法推导了非线性地基梁的垂向振动, 利用积化和公式推导了非线性地基梁中非线性项积分的精确表达式, 提出了路面截断阶数选取的简易方法, 并通过路面位移响应的收敛性进行了验证. 在此基础上, 研究了胎路多点接触、非线性地基、电机激励、车速、路面不平顺幅值等对路面及车辆响应的影响. 结果表明, 非线性地基及多点接触对车辆响应的影响中, 轮胎动载荷的影响最大, 车身加速度和悬架动挠度的影响较小, 且考虑电机激励时, 二者对车辆响应的影响显著增大. 从对路面响应的影响看, 电机激励的影响最大, 非线性地基的影响次之, 多点接触的影响较小. 所建模型及研究方法可为电动汽车的垂向动力学分析提供一种新思路.   相似文献   

16.
肖世富  陈滨 《力学与实践》2005,27(5):21-24,38
挠性根部梁具有整体平动和转动自由度,其传统模型只适宜根部挠性很小的梁.采用柔性多体系统的建模方法建立了挠性根部Euler—Bernoulli梁的非线性动力学模型及线性耦合模型,所建模型不受根部挠性大小的限制;既可描述挠性根部梁的耦合振动,也可分别退化为固支梁或刚性梁的动力学模型;且线性耦合模型可线性变换为挠性根部梁传统模型.作为算例,采用假设模态法分析了两类线性模型的振动特性,表明线性耦合模型优于挠性根部梁传统模型.  相似文献   

17.
Hecker  F.  Hahn  H. 《Nonlinear dynamics》1997,14(3):269-277
The main objective of this paper is the identification of the inertia parameters of a rigid body under planar motion using a planar servo-pneumatic test facility designed for vibration tests. The hardware realization of the test facility used is discussed. The pneumatic components as well as the mechanical components of the test facility are described by linear and by nonlinear mathematical models, derived in Part I [1] of this paper. These model equations are used as identification hypotheses in the identification process. A comparison of time histories obtained by computer simulations of the nonlinear test facility model and by laboratory experiments shows that this nonlinear test facility model provides a realistic identification hypothesis for the estimation experiments. Based on different model hypotheses the inertia parameters of the test table and of the payload have been successfully identified from laboratory experiments. The relative estimation errors of the identified parameters are less than 10%.  相似文献   

18.
In this study, we consider a one-dimensional three-phase model describing wet pressing of paper. Part I is devoted to the simplified case in which air is assumed incompressible. In Part II we drop this assumption. The model is formulated in terms of water saturation and void ratio and it uses a material coordinate to describe spatial dependence. It also involves cross or matching conditions between the wet paper and the felt. In mathematical terms, we end up with a coupled system of equations: a nonlinear diffusion equation and a first order hyperbolic equation. We present some analytical observations to explain the essential behaviour of the model and we carry out numerical experiments using an upwind and a front tracking method.  相似文献   

19.
Recently, it has been theoretically shown that in a 1DOF sliding system, the in-plane angular misalignment (referred to as the yaw angle misalignment (YAM)) has a stabilizing effect to suppress the self-excited vibration induced by the velocity-weakening friction. The YAM theory has been supported qualitatively and quantitatively by some experiments and numerical simulations. However, in some other experiments with another type of apparatuses, the suppression condition was qualitatively different from the theoretical prediction. Based on the above, in this study, the YAM theory has been extended to a 2DOF sliding system with in-plane anisotropic stiffness. Numerical simulation and eigenvalue analysis revealed that the YAM around 45° had a damping effect to suppress the self-excited vibration induced by the velocity-weakening friction, with no supplementary mechanical devices (such as dampers or actuators) to suppress the vibration, which was consistent with the previous experimental results.  相似文献   

20.
A control using Proportional and/or Derivative feedback (PD-control) is applied on a piecewise linear beam system with a flushing one-sided spring element for steady-state vibration amplitude mitigation. Two control objectives are formulated: (1) minimize the transversal vibration amplitude of the midpoint of the beam at the frequency where the first harmonic resonance occurs, (2) achieve this in a larger (low) excitation frequency range, where the lowest nonlinear normal mode dominates the response. Experimentally realizable combinations of PD-control are evaluated for both control objectives. Eventually objective (1) is realized by applying proportional control only, whereas derivative control is selected to realize objective (2). The vibration reduction that is achieved in simulations and validated by experiments is very significant for both objectives. Current results obtained with active PD-control are compared with earlier results obtained using a passive dynamic vibration absorber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号