首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
With support by macrocyclic tertiary amine ligand 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn), a number of mononuclear metal–ligand multiple bonded complexes have been isolated. Starting with a brief summary of these complexes, the present review focuses on ruthenium-oxo and -imido complexes of Me3tacn. A family of monooxoruthenium(IV) complexes [RuIV(Me3tacn)O(N–N)]2+ (N–N = 2,2′-bipyridines) and a cis-dioxoruthenium(VI) complex cis-[RuVI(Me3tacn)O2(CF3CO2)]+ have been isolated, and the structures of [RuIV(Me3tacn)O(bpy)](ClO4)2 (bpy = 2,2′-bipyridine) and cis-[RuVI(Me3tacn)O2(CF3CO2)]ClO4 have been determined by X-ray crystallography. Oxidation of [RuIII(Me3tacn)(NHTs)2(OH)] (Ts = p-toluenesulfonyl) with Ag+ and electrochemical oxidation of [RuIII(Me3tacn)(H2L)](ClO4)2 (H3L = α-(1-amino-1-methylethyl)-2-pyridinemethanol) are likely to generate ruthenium-imido complexes supported by Me3tacn. DFT calculations on cis-[RuVI(Me3tacn)O2(CF3CO2)]+ and proposed ruthenium-imido complexes have been performed. Complexes [RuIV(Me3tacn)O(N–N)]2+ are reactive toward alkene epoxidation, and cis-[RuVI(Me3tacn)O2(CF3CO2)]+ efficiently oxidizes various organic substrates including concerted [3+2] cycloaddition reactions with alkynes and alkenes to selectively afford α,β-diketones, cis-diols, or CC bond cleavage products. Related oxidation reactions catalyzed by ruthenium Me3tacn complexes include epoxidation of alkenes, cis-dihydroxylation of alkenes, oxidation of alkanes, alcohols, aldehydes, and arenes, and oxidative cleavage of CC, CC, and C–C bonds, all of which exhibit high selectivity. Ruthenium Me3tacn complexes are also active catalysts for amination of saturated C–H bonds.  相似文献   

2.
The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) by [Cu(Me3tacn)(OH2)2]2+ has been studied by spectrophotometrical monitoring of the release of the p-nitrophenylate ion from BNPP. The reaction was followed for up to 8000 min at constant BNPP concentration (15 microM) and ionic strength (0.15 M) and variable concentration of complex (1.0-7.5 mM) and temperature (42.5-65.0 degrees C). Biphasic kinetic traces were observed, indicating that the complex promotes the cleavage of BNPP to NPP [(p-nitrophenyl)phosphate] and then cleavage of the latter to phosphate, the two processes differing in rate by 50-100-fold. Analysis of the more amenable cleavage of BNPP revealed that the rate of BNPP cleavage is among the highest measured for mononuclear copper(II) complexes and is slightly higher than that reported for the close analogue [Cu(iPr3tacn)(OH2)2]2+. Detailed analysis required the determination of the pKa for [Cu(Me3tacn)(OH2)2]2+ and the constant for the dimerization of the conjugate base to [(Me3tacn)Cu(OH)2Cu(Me3tacn)]2+ (Kdim). Thermodynamic parameters derived from spectrophotometric pH titration and the analysis of the kinetic data were in reasonable agreement. Second-order rate constants for cleavage of BNPP by [Cu(Me3tacn)(OH2)(OH)]+ and associated activation parameters were obtained from initial rate analysis (k = 0.065 M(-1) s(-1) at 50.0 degrees C, deltaH = 56+/-6 kJ mol(-1), deltaS = -95+/-18 J K(-1) mol(-1)) and biphasic kinetic analysis (k = 0.14 M(-1) s(-1) at 50.0 degrees C, deltaH = 55+/-6 kJ mol(-1), deltaS = -92+/-20 J K(-1) mol(-1)). The negative entropy of activation is consistent with a concerted mechanism with considerable associative character. The complex was found to catalyze the cleavage of BNPP with turnover rates of up to 1 per day. Although these turnover rates can be considered low from an application point of view, the ability of the complexes to catalyze phosphate ester cleavage is clearly demonstrated.  相似文献   

3.
Amido-bridged dinuclear cobalt(III) complexes with 1,4,7-triazacyclononane (tacn) were synthesized from [Co(tacn)(O3SCF3)3] by treatment with potassium amide in liquid ammonia at 100 degrees C. Two isomeric triply bridged complexes, [(tacn)Co(mu-NH2)3Co(tacn)]3+ and [(tacn)Co(mu-NH2)2[mu-tacn(-H)]Co(NH3)]3+, were isolated as perchlorates, and the crystal structure of the perrhenate of the latter complex was determined by X-ray diffraction. In this compound a nitrogen atom (deprotonated) from one of the tacn ligands forms a third bridge together with two amido bridges. In 1.0 M (Na,H)ClO4 ([H+] 0.1-1.0 M) the two isomers undergo acid-accelerated amido bridge cleavage, as earlier found for chromium(III) analogues, in spite of the fact that such bridges are co-ordinatively saturated. The triamido-bridged isomer is in this acid medium in equilibrium with [(H2O)(tacn)Co(mu-NH2)2Co(tacn)(NH3)]4+. An isolated perchlorate of this complex appeared to be the salt of the trans-ammineaqua isomer as determined by X-ray diffraction. Equilibration from both sides fits the first-order rate constant dependence k(obs)=6.2(3) x 10(-5)[H+] + 2.1(2) x 10(-5)(s(-1)) at 40 degrees C. Prolonged treatment of the two triply bridged isomers in 1.0 M HClO4 at elevated temperature produces primarily triply bridged dinuclear species where one or two amido bridges have been replaced by hydroxo bridges.  相似文献   

4.
The complexes of osmium with tacn (1,4,7-triazacyclononane) and Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), [LOs (eta(6)-C(6)H(6))](PF(6))(2) (L = tacn) and LOsCl(3) (L = tacn, Me(3)tacn), have been prepared by substitution of L on [Os(eta(6)-C(6)H(6))Cl(2)](2) or [Os(2)Cl(8)](2)(-), respectively. Reaction of LOsCl(3) with neat triflic acid leads to partial replacement of chloride and formation of the binuclear Os(III)-Os(III) complexes [LOs(&mgr;-Cl(3))OsL](PF(6))(3) (L = tacn, Me(3)tacn). The binuclear nature was established by NMR spectroscopy and elemental analysis and, for L = tacn, a partially refined X-ray crystal structure which shows the Os-Os separation to be 2.667 ?, indicative of significant metal-metal bonding. Reduction of [LOs(&mgr;-Cl(3))OsL](3+) over zinc amalgam in either aqueous or non-aqueous solution yields the intensely colored Os(II)-Os(III) mixed-valence ions [LOs(&mgr;-Cl(3))OsL](2+). Electrochemical measurements on [LOs(&mgr;-Cl(3))OsL](3+) in CH(3)CN reveal the reversible formation of the mixed valence ions. These are further reduced at lower potential to the Os(II)-Os(II) binuclear species, reversibly for L = Me(3)tacn. (Me(3)tacn)OsCl(3) is oxidized by persulfate ion to give [(Me(3)tacn)OsCl(3)](+); zinc amalgam reduction in an aqueous solution at high concentration produces the binuclear complex [(Me(3)tacn)Os(&mgr;-Cl(3))Os(Me(3)tacn)](3+) or, at low concentration, a solution containing an air sensitive osmium(II) species. Addition of BPh(4)(-) results in the eta(6)-arene zwitterion [(Me(3)tacn)Os(eta(6)-C(6)H(5)BPh(3))](+), which was characterized by X-ray diffraction on the BPh(4)(-) salt. The compound crystallizes in the triclinic space group P1 with a = 11.829(2) ?, b = 12.480(3) ?, c = 17.155(4) ?, alpha = 84.42(2) degrees, beta = 83.52(2) degrees, gamma = 71.45(2) degrees, V = 2380(2) ?(3), Z = 2, and R = 7.62%, and R(w) = 7.39%.  相似文献   

5.
Lin H  Zhang H  Yang L  Li C 《Organic letters》2002,4(5):823-825
[reaction: see text] Reactions of alkylmercury chlorides with arene manganese tricarbonyl complexes in the presence of NaI led to the formation of the addition-reduction products. The mechanism was postulated to be the alkyl radical addition to ArMn(CO)3+ cation to form the corresponding 17 valence electron intermediate, which was then reduced by alkylmercury chloride via a singlet electron transfer process to afford the product and regenerate an alkyl radical.  相似文献   

6.
The ligand 1,4,7-tris(acetophenoneoxime)-1,4,7-triazacyclononane (H(3)L) has been synthesized and its coordination properties toward Cu(II), Ni(II), Co(II), and Mn(II) in the presence of air have been investigated. Copper(II) yields a mononuclear complex, [Cu(H(2)L)](ClO(4)) (1), cobalt(II) and manganese(II) ions yield mixed-valence Co(III)(2)Co(II) (2a) and Mn(II)(2)Mn(III) (4) complexes, whereas nickel(II) produces a tetranuclear [Ni(4)(HL)(3)](2+) (3) complex. The complexes have been structurally, magnetochemically, and spectroscopically characterized. Complex 3, a planar trigonal-shaped tetranuclear Ni(II) species, exhibits irregular spin-ladder. Variable-temperature (2-290 K) magnetic susceptibility analysis of 3 demonstrates antiferromagnetic exchange interactions (J = -13.4 cm(-1)) between the neighboring Ni(II) ions, which lead to the ground-state S(t) = 2.0 owing to the topology of the spin-carriers in 3. A bulk ferromaganetic interaction (J = +2 cm(-1)) is prevailing between the neighboring high-spin Mn(II) and high-spin Mn(III) ions leading to a ground state of S(t) = 7.0 for 4. The large ground-state spin value of S(t) = 7.0 has been confirmed by magnetization measurements at applied magnetic fields of 1, 4 and 7 T. A bridging monomethyl carbonato ligand formation occurs through an efficient CO(2) uptake from air in methanolic solutions containing a base in the case of complex 4.  相似文献   

7.
The solid charge-transfer complexes formed in the reaction of the electron donor 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the acceptors iodine, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been isolated. These were characterized through electronic and infrared spectra as well as thermal and elemental analysis. The results show that the formed solid CT-complexes have the formulas [(TMTACN)I]I3, [(TMTACN)(TCNE)5] and [(TMTACN)(TCNQ)3] in full agreement with the known reaction stoichiometries in solution. The chloranil CT-solid complex cannot be isolated in pure form.  相似文献   

8.
9.
The gas-phase reactions of a series of (di)manganese carbonyl positive ions with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) have been examined with the aid of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The monomanganese carbonyl ions, [Mn(CO)(n)](+) (n = 2-5), react predominantly by ligand exchange and to a minor extent by electron transfer with the formation of the radical cation of Me(3)TACN. For the [Mn(CO)(n)](+) (n = 2-4) ions, the ligand exchange results in the exclusive formation of a [Mn(Me(3)TACN)](+) complex, whereas small amounts of [Mn(CO)(Me(3)TACN)](+) ions are also generated in the reactions of the [Mn(CO)(5)](+) ion. The [Mn(2)(CO)(n)](+) ions (n = 2, 4 and 5) react also by competing electron transfer and ligand exchange. The reaction of the [Mn(2)(CO)(2)](+) and [Mn(2)(CO)(4)](+) ions is associated with cleavage of the Mn--Mn bond as evidenced by the pronounced formation of [Mn(Me(3)TACN)](+) ions. For [Mn(2)(CO)(5)](+), the ligand exchange leads mainly to the formation of [Mn(2)(CO)(n)(Me(3)TACN)](+) (n = 1-3) ions. These primary product ions react subsequently by the incorporation of a second Me(3)TACN molecule to afford [Mn(2)(CO)(Me(3)TACN)(2)](+) and [Mn(2)(CO)(2)(Me(3)TACN)(2)](+) ions. Both of these latter species incorporate an oxygen molecule with formation of ions with the assigned composition of [Mn(2)(O(2))(CO)(Me(3)TACN)(2)](+) and [Mn(2)(O(2))(CO)(2)(Me(3)TACN)(2)](+).  相似文献   

10.
A computational and experimental study of additions of electrophiles, nucleophiles, and radicals to tricarbonylchromium-complexed arenes is reported. Competition between addition to a complexed arene and addition to a noncomplexed arene was tested using 1,1-dideuterio-1-iodo-2-((phenyl)tricarbonylchromium)-2-phenylethane. Reactions under anionic and cationic conditions give exclusive formation of 1,1-dideuterio-1-((phenyl)tricarbonylchromium)-2-phenylethane arising from addition to the complexed arene. Radical conditions (SmI(2)) afford two isomeric products, reflecting a 2:1 preference for radical addition to the noncomplexed arene. In contrast, intermolecular radical addition competition experiments employing ketyl radical addition to benzene and (benzene)tricarbonylchromium show that addition to the complexed aromatic ring is faster than attack on the noncomplexed species by a factor of at least 100,000. Density functional theory calculations using the B3LYP method, employing a LANL2DZ basis set for geometry optimizations and a DZVP2+ basis set for energy calculations, for all three reactive intermediates showed that tricarbonylchromium stabilizes all three types of intermediates. The computational results for anionic addition agree well with established chemistry and provide structural and energetic details as reference points for comparison with the other reactive intermediates. Intermolecular radical addition leads to exclusive reaction on the complexed arene ring as predicted by the computations. The intramolecular radical reaction involves initial addition to the complexed arene ring followed by an equilibrium leading to the observed product distribution due to a high-energy barrier for homolytic cleavage of an exo bond in the intermediate cyclohexadienyl radical complex. Mechanisms are explored for electrophilic addition to complexed arenes. The calculations strongly favor a pathway in which the cation initially adds to the metal center rather than to the arene ring.  相似文献   

11.
12.
cis-Dioxoruthenium(VI) complex [(Me(3)tacn)(CF(3)CO(2))Ru(VI)O(2)]ClO(4) (1, Me(3)tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) reacted with alkenes in aqueous tert-butyl alcohol to afford cis-1,2-diols in excellent yields under ambient conditions. When the reactions of 1 with alkenes were conducted in acetonitrile, oxidative C=C cleavage reaction prevailed giving carbonyl products in >90% yields without any cis-diol formation. The alkene cis-dihydroxylation and C=C cleavage reactions proceed via the formation of a [3 + 2] cycloadduct between 1 and alkenes, analogous to the related reactions with alkynes [Che et al. J. Am. Chem. Soc. 2000, 122, 11380]. With cyclooctene and trans-beta-methylstyrene as substrates, the Ru(III) cycloadducts (4a) and (4b) [formula; see text] were isolated and structurally characterized by X-ray crystal analyses. The kinetics of the reactions of 1 with a series of p-substituted styrenes has been studied in acetonitrile by stopped-flow spectrophotometry. The second-order rate constants varied by 14-fold despite an overall span of 1.3 V for the one-electron oxidation potentials of alkenes. Secondary kinetic isotope effect (KIE) was observed for the oxidation of beta-d(2)-styrene (k(H)/k(D) = 0.83 +/- 0.04) and alpha-deuteriostyrene (k(H)/k(D) = 0.96 +/- 0.03), which, together with the stereoselectivity of cis-alkene oxidation by 1, is in favor of a concerted mechanism.  相似文献   

13.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

14.
Three new complexes [CuL(N3)2] (1), [CuL(SCN)2] (2), and [CoL(SCN)3] (3) (L?=?1,4,7-tribenzyl-1,4,7-triazacyclononane) have been synthesized and structurally characterized. Complex 1 crystallizes in monoclinic space group P2(1)/n with unit cell parameters a?=?14.105(7), b?=?8.999(5), c?=?21.603(11)?Å, β?=?100.470(7)°. While 2 crystallizes in triclinic space group P-1 with unit cell parameters a?=?9.6380(16), b?=?10.6993(18), c?=?15.798(3)?Å, α?=?106.636(3), γ?=?116.478(3)°. Complex 3 crystallizes in trigonal space group P–3c1 with unit cell parameters a?=?14.744(3), b?=?14.744(3), c?=?16.098(4)?Å, γ?=?120°. Elemental analysis, IR, UV-vis spectra of complexes 13 and ESR spectra of complexes 12 were also determined.  相似文献   

15.
Oxone (peroxysulphate) very efficiently oxidizes benzene to p-quinone (TON 1140) and alkanes to the corresponding alcohols and ketones (aldehydes) in aqueous acetonitrile 50 °C if catalytic amounts of complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid are present in the solution. In contrast to the similar reaction with H2O2, the alkane oxidation with Oxone does not afford the corresponding alkyl hydroperoxides. Phenol was quantitatively oxidized to a mixture of p-quinone and pyrocatechol (9:1 ratio). Cyclohexanol gave cyclohexanone (TON 400). The proposed mechanism includes the formation of an oxidizing species containing the Mn(V)O fragment. A kinetic study demonstrated that an adduct of [Mn2L2O3]2+ and oxalic acid is formed in the initial stage. This adduct reacts with Oxone to generate the oxidizing species.  相似文献   

16.
A novel cobalt (III) complex has been synthesized and its structure was determined. The structure consists of Co(tacn)23+ ions and ClO4, each cobalt (III) ion was six-coordinated with six nitrogen atoms of two tacns. Hydrogen bonds widely exist between the oxygen atoms of ClO4 and the nitrogen and carbon atoms of tacn, resulting in a unique three-dimensional network. The electronic spectra were measured and assigned in the strong-field approximation, giving the values of the parameter: Δ, B and C.  相似文献   

17.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   

18.
The coordination chemistry of the sterically hindered macrocyclic triamines, 1,4,7-R3-1,4,7-triazacyclononane (R = i-Pr, i-Pr3tacn, and R = i-Bu, i-Bu3tacn) with divalent transition metals has been investigated. These ligands form a series of stable novel complexes with the triflate salts MII(CF3SO3)2 (M = Fe, Co, or Zn) under anaerobic conditions. The complexes Fe(i-Pr3tacn)(CF3SO3)2 (2), [Co(i-Pr3tacn)(SO3CF3)(H2O)](CF3SO3) (3), [Co(i-Pr3tacn)(CH3CN)2](BPh4)2 (4), Zn(i-Pr3tacn)(CF3SO3)2 (5), [Fe(i-Bu3tacn)(CH3CN)2(CF3SO3)](CF3SO3) (6), Fe(i-Bu3tacn)-(H2O)(CF3SO3)2 (7), and Co(i-Bu3tacn)(CF3SO3)2 (8) have been isolated. The behavior of these paramagnetic complexes in solution is explored by their 1H NMR spectra. The solid-state structures of four complexes have been determined by X-ray single-crystal crystallography. Crystallographic parameters are as follows. 2: C17H33F6FeN3O6S2, monoclinic, P2(1)/n, a = 10.895(1) A, b = 14.669(1) A, c = 16.617(1) A, beta = 101.37(1) degrees, Z = 4. 3: C17H35CoF6N3O7S2, monoclinic, P2(1)/c, a = 8.669(2) A, b = 25.538(3) A, c = 12.4349(12) A, beta = 103.132(13) degrees, Z = 4. 6: C24H45F6FeN5O6S2, monoclinic, P2(1)/c, a = 12.953(6) A, b = 16.780(6) A, c = 15.790(5) A, beta = 96.32(2) degrees, Z = 4. 7: C20H41F6FeN3O7S2, monoclinic, C2/c, a = 22.990(2) A, b = 15.768(2) A, c = 17.564(2) A, beta = 107.65(1) degrees, Z = 8. The ligand i-Pr3tacn leads to complexes in which the metal ions are five-coordinate, while it's isobutyl homologue affords six-coordinate complexes. This difference in the stereochemistries around the metal center is attributed to steric interactions involving the bulky alkyl appendages of the macrocycles.  相似文献   

19.
A series of constrained geometry complexes of formula [(eta5-RC2B9H10)CH2(eta1-NMe2)]Al(Me) (R = H, 2a; Me, 2b) was prepared in high yields from the reaction of dicarbollylamine with trimethylaluminum. These complexes showed a unique constrained geometry structure with a central aluminum atom having eta5;eta1-coordination. DFT calculations further elaborate the electronic effect of an amine sidearm on the bonding capability of dicarbollyl ligand with an aluminum atom. It has been noted that dicarbollylamines are effective ancillary ligands for the production of novel constrained geometry complexes of aluminum.  相似文献   

20.
Asymmetric hydrogenation of various alpha-chloro aromatic ketones with Ru(OTf)(TsDPEN)(eta6-arene) (TsDPEN = N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine) produces the chiral chlorohydrins in up to 98% ee. This reaction can be conducted even on a 206-g scale. The hydrogenation of an alpha-chloro ketone with a phenol moiety has been utilized for the synthesis of (R)-norphenylephrine without protection-deprotection operations. [reaction: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号