首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The green synthesis of metallic nanoparticles paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. The present article reports an environmentally benign and unexploited method for the synthesis of silver nanocatalysts using Trigonella foenum-graecum seeds, which is a potential source of phytochemicals. The UV–visible absorption spectra of the silver samples exhibited distinct band centered around 400–440 nm. The major phytochemicals present in the seed extract responsible for the formation of silver nanocatalysts are identified using FTIR spectroscopy. The report emphasizes the effect of the size of silver nanoparticles on the degradation rate of hazardous dyes, methyl orange, methylene blue and eosin Y by NaBH4. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.  相似文献   

2.
Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode   总被引:1,自引:0,他引:1  
The degradation of azo dye, methyl orange (MeO) in aqueous solution with sonophotoelectrocatalytic process was investigated. The TiO(2) nanotubes were used as electrode in photoelectrocatalytic (PEC), sonophotoelectrocatalytic (SPEC) processes or as photocatalyst in photocatalytic (PC), sonophotocatalytic (SPC) processes, respectively. Experimental results showed that the hybrid processes could efficiently enhance the degradation efficiency of MeO, and followed pseudo-first-order kinetics. At the optimized experimental conditions, the rate constants of decolorization of MeO were 0.0732 min(-1) for SPEC process; 0.0523 min(-1) for PEC process, 0.0073 min(-1) for SPC process and 0.0035 min(-1) for PC process. The rate constants obviously indicated that there existed synergistic effect in the ultrasonic, electro-assisted and photocatalytic processes.  相似文献   

3.
We report the synthesis of nanostructure ZnO semiconductor with ~2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV–vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at ~334 nm corresponding to band gap of ~3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at ~410 nm and a green emission peak at ~525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency (~50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.  相似文献   

4.
In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of TiO(2)-ZnO mixed with Er(3+):YAlO(3), namely, Er(3+):YAlO(3)/TiO(2)-ZnO composite. It is able to utilize the sonoluminescence light to improve the sonocatalytic degradation of organic dyes. The Er(3+):YAlO(3) as up-conversion luminescence agent was synthesized by sol-gel and auto-combustion method, and then Er(3+):YAlO(3)/TiO(2)-ZnO composite as sonocatalyst were prepared by ultrasonic dispersion and liquids boil method. The prepared up-conversion luminescence agent and composites were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Acid Red B dye was selected to examine the sonocatalytic activity of Er(3+):YAlO(3)/TiO(2)-ZnO composite. The degradation reaction processes were monitored by UV-vis spectrophotometer and ion chromatogram. The influences on the activity of the Er(3+):YAlO(3)/TiO(2)-ZnO such as Ti/Zn molar ratio, heat-treated temperature and heat-treated time were studied. The results showed that the Er(3+):YAlO(3)/TiO(2)-ZnO composite exhibited a significantly high sonocatalytic activity compared with other catalysts in the degradation of Acid Red B. And the sonocatalyst with 1:1 Ti/Zn molar ratio heat-treated at 550°C for 60min showed the highest sonocatalytic activity. At last, the experiment also indicated that it has a good sonocatalytic activity to degrade other organic dyes.  相似文献   

5.
Titanium oxide nanoparticles (NPs) were successfully prepared by sparking off two titanium tips into water for 1–5 h. The nanoparticle-dispersed water was obtained for further characterization. The transmission electron microscopy result shows that the particle size is in the range of 1–5 nm. The electron diffraction patterns and Raman spectra reveal that the as-prepared and the annealed samples at 250 °C are the anatase phase. However, the anatase–rutile phase transformation was observed from the samples at annealing temperature as low as 500 °C. The result of methylene blue-decoloration testing under sunbath suggests that the NPs have good photocatalytic property.  相似文献   

6.
Na5PV2Mo10O40 supported on nanoporous anatase TiO2 particles, TiO2–PVMo, was used as an efficient photocatalyst for photocatalytic degradation of different dyes by visible light using oxygen as oxidant. This catalyst showed a good catalytic activity in the sonocatalytic and sonophotocatalytic decomposition of different dyes in aqueous solutions. The TiO2–PVMo composite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure TiO2.  相似文献   

7.
Impacts of pH and molecular structure on ultrasonic degradation of azo dyes   总被引:5,自引:0,他引:5  
Sonochemical bleaching of monoazo dyes was investigated by irradiating 30 microM solutions of two "aryl-azo-naphthol" type model dyes in acidic, neutral and basic conditions using a 300 kHz emitter. It was found that the rate of bleaching in all cases was first order with respect to the maximum absorption of the dye in the visible band, and accelerated with increased acidity. The inhibition observed at alkaline conditions was attributed to the formation of anionic dye structures and their competition with the dye and its intermediate oxidation products for hydroxyl radicals, which are the major precursors of azo dye oxidation in sonicated water. Decolorization of the dyes was also related to the size of the molecule and the type or position of substituents about azo bonds. Comparison of color decay rates at similar conditions showed that the dye with a simple structure, low molecular mass and one ortho-substituent (hydroxyl) about the azo bond bleached considerably faster than the one having a more complicated structure (higher mass) and an additional o-substituent to the azo bond other than the OH group.  相似文献   

8.
Zinc tetraaminophthalocyanine (Zn-TAPc) modified by cyanuric chloride was immobilized on silk fibers by covalent bond to obtain a supported photocatalyst (Zn-TDTAPc-SF). The photocatalytic degradation of acid orange II based on Zn-TDTAPc-SF/O2 system was investigated under visible light irradiation (λ ≥ 400 nm). The results indicated that Zn-TDTAPc-SF exhibited excellent photocatalytic performance in the presence of O2 under visible light irradiation. In 6 h, more than 93% of acid orange II (AO2) in Zn-TDTAPc-SF/O2 system was eliminated at initial pH 5 under visible light irradiation, and Zn-TDTAPc-SF still remained effective in repetitive fives cycles. Furthermore, NaCl played a positive role in the catalytic reaction, different from the negative one observed in homogeneous catalysis, and the reaction can proceed in a more wide pH range from acidic to alkaline. Based on the analysis of FT-IR and Gas Chromatography/Mass Spectrometry (GC–MS), AO2 was mainly converted into some small molecular biodegradable aliphatic carboxylic compounds such as maleic acid, fumaric acid, succinic acid, etc. The photodegradation mechanism for the evolution of AO2 was proposed by Electron Paramagnetic Resonance (EPR) spectra.  相似文献   

9.
To compare the annealing effects on GaMnAs-doped with Zn (GaMnAs:Zn) and undoped GaMnAs (u-GaMnAs) epilayers, we grew GaMnAs thin films at 200 °C by molecular beam epitaxy (MBE) on GaAs substrates, and they were annealed at temperatures ranging from 220 °C to 380 °C for 100 min in air. These epilayers were characterized by high-resolution X-ray diffraction (XRD), electrical, and magnetic measurements. A maximum resistivity at temperatures Tm close to the Curie temperatures Tc was observed from the measurement of the temperature-dependent resistivity ρ(T) for both the GaMnAs:Zn and the u-GaMnAs samples. We found, however, that the maximum temperature Tm observed for GaMnAs:Zn epilayers increased with increasing annealing temperature, which was different from the result with the u-GaMnAs epilayers. The formation of GaAs:Zn and MnAs or Mn-Zn-As complexes with increasing annealing temperature is most likely responsible for the differences in appearance.  相似文献   

10.
MgTi2O5 (magnesium dititanate) nanoparticles were prepared by a simple hydrothermal assisted post-annealing method and characterized with various analytical techniques. The catalytic properties (sonocatalytic, photocatalytic and sonophotocatalytic activity) were evaluated using the degradation of triphenylmethane dyes (crystal violet, basic fuchsin, and acid fuchsin). The sonophotocatalytic activity of MgTi2O5 nanoparticles towards crystal violet was found to be ~2.9 times higher than the photocatalytic activity and ~20 times higher than that of the sonocatalytic processes. In addition, the sonophotocatalytic efficiency of MgTi2O5 nanoparticles was found to be remarkable for the degradation of basic fuchsin (cationic dye) and acid fuchsin (anionic dye). The mechanism of these catalytic activities has been discussed in detail.  相似文献   

11.
Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO2 NPs activated by external ultrasound irradiation (called TiO2/US treatment). The present study first examined the uptake behavior of TiO2 NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24 h. It took 6 h for sufficient uptake of the TiO2 NPs by the cells. Next, the effect of the TiO2/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm2, 30 s) to the cells which incorporated the TiO2 NPs. Apoptosis was observed at 6 h after the TiO2/US treatment. Although no apparent cell-injury was observed until 24 h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO2/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO2 (0.1 mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm2 for 60 s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions.  相似文献   

12.
《Current Applied Physics》2020,20(2):249-254
The main drawbacks of anatase titanium dioxide (TiO2) nanoparticles for being used as a photocatalyst are due to the rapid charge recombination of the electron-hole pairs and the wide band gap energy, limiting its photocatalysis application. To enhance photocatalytic activity, structure modification was performed here. Heterogeneous nanostructure of Dy-doped TiO2 nanoparticles hybrid with Monoclinic TiO2 nanobelts (Dy/TNBs) was fabricated via hydrothermal method. Annealing temperature was varied to investigate its effect on phase composition and morphology of the as-prepared TiO2 catalyst. Phase composition and morphology were studied by XRD and SEM, respectively. The effect of amount of catalyst loaded on the degradation efficiency of methylene blue (MB) dye in aqueous solution under UV and fluorescence illumination was investigated. The results showed that pure monoclinic TiO2 nanobelts (TNBs) was achieved at 450 °C. Enhanced photocatalytic activity under both UV and fluorescence irradiation was found on Dy/TNB samples. The optimum Dy dosage providing the highest MB degradation rates under both irradiation sources was 0.1 mol%.  相似文献   

13.
负载型二氧化钛光催化材料的制备及其光催化性能研究   总被引:1,自引:0,他引:1  
以球形氧化铝为载体,采用溶胶-凝胶法和浸渍涂覆过程制备了负载型二氧化钛光催化材料。以扫描电子显微镜(SEM)和X-射线衍射仪(XRD)等手段对所合成的样品形貌及晶型进行了表征。结果表明,氧化铝载体经负载二氧化钛后,在球形氧化铝表面沉积了一层粒径为10~20nm的锐钛型二氧化钛纳米颗粒。通过能量色散X射线光谱(EDX)对氧化铝载体和所合成的样品进行进一步分析,表明样品中明显存在Ti元素。另外,提高氧化铝载体在二氧化钛溶胶中的浸渍次数能够有效提高二氧化钛的负载量。当浸渍次数增加到5次时,Ti元素的含量由3.8Wt.%提高至15.7Wt.%。另外,以亚甲基蓝为目标降解物,详细研究了不同浸渍次数获得的负载型二氧化钛催化材料的催化性能。结果表明:随着浸渍次数的增加,负载型二氧化钛催化材料的表面形貌不仅得到明显改善,而且显著提高了样品的光催化活性。当浸渍次数由1次提高至4次时,亚甲基蓝的降解率由40%上升至83.1%。然而,当二氧化钛负载量达到一定程度时,由于不断浸渍导致下层的二氧化钛受光照机会和光照强度减弱,导致其光催化活性提高缓慢。当浸渍次数提高至5次时,亚甲基蓝降解率仅为85.6%。所制备的负载型二氧化钛光催化材料重复使用5次,其光催化活性保持相对稳定。  相似文献   

14.
The sonochemical decolorization and decomposition of azo dyes, such as C. I. Reactive Red 22 and methyl orange, were performed from the viewpoints of wastewater treatment and to determine the reaction kinetics. A low concentration of the azo dye solution was irradiated with a 200 kHz and 1.25 W/cm2 ultrasound in a homogeneous aqueous solution. The azo dye solutions were readily decolorized by the irradiation. The sonochemical decolorization was also depressed by the addition of the t-butyl alcohol radical scavenger. These results indicated that azo dye molecules were mainly decomposed by OH radicals formed from the water sonolysis. In this paper, we propose a new kinetics model taking into account the heterogeneous reaction kinetics similar to a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. The proposed kinetics model is based on the local reaction site at the interface region of the cavitation bubbles, where azo dye molecules are quickly decomposed because an extremely high concentration of OH radicals exists in this region. To confirm the proposed kinetics model, the effects of the initial concentration of azo dyes, irradiated atmosphere and pH on the decomposition rates were investigated. The obtained results were in good agreement with the proposed kinetics model.  相似文献   

15.
Zn-doped SnO2 nanoparticles were prepared by the chemical co-precipitation route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses of these prepared nanoparticles were carried out for structural and morphological studies. All the samples have been found to have tetragonal rutile structure of the polycrystalline SnO2 having crystallite size in the range 13–25 nm. TEM micrographs show agglomeration of nanoparticles in all the samples. At a particular temperature, the dielectric constant of all the samples has been found to decrease with increasing frequencies which may be due to rapid polarization processes occurring in SnO2 nanoparticles. The ac conductivity, σ (ω), has been found to vary with frequency according to the relation σ (ω) ∝ ωS. The value of S has been found to be temperature dependent, decreasing with increasing frequency which suggests that a hopping process is the most likely conduction mechanism in these nanoparticles. The room temperature photoluminescence (PL) spectra of the undoped and Zn-doped SnO2 nanoparticles consist of the near band-edge ultraviolet (UV) emission and the defect related visible emissions. The origin of emission peaks in the visible region is attributed to oxygen-related defects that are introduced during growth.  相似文献   

16.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

17.
Ionics - This work reports the effect of tantalum (0.1–1 at.% Ta) on the photocatalytic performance of TiO2 annealed at 1373 and 1673 K in air. It was shown that addition of...  相似文献   

18.
In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.  相似文献   

19.
TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5 g/L, RB69 initial concentration of 20 mg/L and ultrasonic power of 300 W. Furthermore, the effect of OH, h+ and O2 scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.  相似文献   

20.
This study shows that the exposure to visible light of the poly[diphenylsilane-co-methyl(H)silane] solution together with a silver salt, initiates a photocatalytic process which leads to the formation of metal nanoparticles. This phenomenon is a consequence of close-range interactions between the methylhydrosilyls’ σ-conjugated segments and the metal ions at the salt surface. Due to the weak charge transfer complexes thin films casted from solution show a specific morphology with microdomains of various dimensions and shapes in relation with the stage of the process. The polymethylhydrosilane copolymer stabilizes the synthesized nanoparticles in a similar manner as the conventional surfactants do. The polymer chemical structure is not affected during the photocatalytic process and the optical and electronic properties of polysilanes are well preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号