首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
For the last decade, a variant of pulsed laser ablation, Resonant-Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE), has been studied as a deposition technique for organic and polymeric materials. RIR-MAPLE minimizes photochemical damage from direct interaction with the intense laser beam by encapsulating the polymer in a high infrared-absorption solvent matrix. This review critically examines the thermally-induced ablation mechanisms resulting from irradiation of cryogenic solvent matrices by a tunable free electron laser (FEL). A semi-empirical model is used to calculate temperatures as a function of time in the focal volume and determine heating rates for different resonant modes in two model solvents, based on the thermodynamics and kinetics of the phase transitions induced in the solvent matrices. Three principal ablation mechanisms are discussed, namely normal vaporization at the surface, normal boiling, and phase explosion. Normal vaporization is a highly inefficient polymer deposition mechanism as it relies on collective collisions with evaporating solvent molecules. Diffusion length calculations for heterogeneously nucleated vapor bubbles show that normal boiling is kinetically limited. During high-power pulsed-FEL irradiation, phase explosion is shown to be the most significant contribution to polymer deposition in RIR-MAPLE. Phase explosion occurs when the target is rapidly heated (108 to 1010 K/s) and the solvent matrix approaches its critical temperature. Spontaneous density stratification (spinodal decay) within the condensed metastable phase leads to rapid homogeneous nucleation of vapor bubbles. As these vapor bubbles interconnect, large pressures build up within the condensed phase, leading to target explosions and recoil-induced ejections of polymer to a near substrate. Phase explosion is a temperature (fluence) threshold-limited process, while surface evaporation can occur even at very low fluences.  相似文献   

2.
We present experimental data on mass removal during 1064-nm pulsed laser ablation of graphite, niobium and YBa2Cu3O7-δ superconductor. Evidence for the transition from normal vaporization to phase explosion has been obtained for these materials, showing a dramatic increase in the ablation rate at the threshold fluences of 22, 15 and 17.5 J/cm2, respectively. A numerical model is used to evaluate the ablation rate and temperature distribution within the targets under near-threshold ablation conditions. The results are analyzed from the viewpoint of the vaporized matter approaching the critical point with increasing laser fluence. A possible means of the estimating the thermodynamic critical temperature from the data for nanosecond laser ablation is discussed. It is suggested that the critical temperature of refractory metals is higher than that estimated with the traditional methods due to plasma effects. An analogy with the boiling crisis (the transition from nucleate to film boiling) is drawn to explain the formation of ablation craters with spallated edges. Received: 18 May 2000 / Accepted: 14 July 2000 / Published online: 22 November 2000  相似文献   

3.
谭胜  吴建军  黄强  张宇  杜忻洳 《物理学报》2019,68(5):57901-057901
为了分析飞秒激光烧蚀过程,在双相延迟模型的基础上建立了双曲型热传导模型.模型中考虑了靶材的加热、蒸发和相爆炸,还考虑了等离子体羽流的形成和膨胀及其与入射激光的相互作用,以及光学和热物性参数随温度的变化.研究结果表明:等离子体屏蔽对飞秒激光烧蚀过程有重要的影响,特别是在激光能量密度较高时;两个延迟时间的比值对飞秒激光烧蚀过程中靶材的温度特性和烧蚀深度有较大的影响;飞秒激光烧蚀机制主要以相爆炸为主.飞秒激光烧蚀的热影响区域较小,而且热影响区域的大小受激光能量密度的影响较小.计算结果与文献中实验结果的对比表明基于双相延迟模型的飞秒激光烧蚀模型能有效对飞秒激光烧蚀过程进行模拟.  相似文献   

4.
Optical reflectivity, removal rate and ablative recoil pressure magnitudes were measured as a function of laser fluence during high-power UV nanosecond laser ablation of graphite. At low fluences only melting and weak surface vaporization of molten carbon were observed. At moderate fluences there is a very narrow fluence interval where the reflected fluence starts to saturate, while the removal rate and ablative recoil pressure rise drastically in a correlated manner, indicating the onset of a near-critical surface phase explosion. Then, at higher fluences the reflected fluence, removal rate and recoil pressure saturate with an appearance of a luminous plume, altogether indicating negligible specular reflectance and absorbance on the target surface due to its complete screening by the highly-absorbing laser plume. The overall strong correlation between the removal rate and recoil pressure magnitudes may indicate rather quasi-continuous removal of the near-critical superheated molten carbon layer by a propagating unloading wave in the absence of a crucial sub-surface temperature maximum in the layer.  相似文献   

5.
A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.  相似文献   

6.
纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
谭新玉  张端明  李智华  关丽  李莉 《物理学报》2005,54(8):3915-3921
研究了高能短脉冲激光薄膜制备的整个烧蚀过程.首先建立了基于超热理论的烧蚀模型,然 后利用较为符合实际的高斯分布表示脉冲激光输入能量密度,给出了考虑蒸发效应不同阶段 的烧蚀状态方程.结合适当的边界条件,以Si靶材为例,利用有限差分法得到了靶材在各个 阶段温度随时间和烧蚀深度的演化分布规律及表面蒸发速度与烧蚀深度在不同激光辐照强度 下随时间的演化规律.结果表明,在脉冲激光辐照阶段,靶材表面的蒸发效应使得靶材表面 温度上升显著放缓;在激光辐照强度接近相爆炸能量阈值时,蒸发速度与蒸发厚度的变化由 于逆流现象将显著放缓.还得到了考虑了熔融弛豫时间及蒸发效应的固-液界面随时间的演化 方程,这一结论较先前工作更具有普适性. 关键词: 脉冲激光烧蚀 热流方程 温度演化 有限差分法  相似文献   

7.
We investigated the mechanisms of material ejection in Q-switched Er:YAG laser tissue ablation (70-ns pulse duration) where moderate and large radiant exposures are associated with large volumetric energy densities in the target material. For water, an initial phase of non-equilibrium surface vaporization is followed by an explosive vaporization of the superficial liquid volume from a supercritical state. The ablation of deeper layers with lower peak temperatures proceeds as phase explosion. For mechanically strong tissues, non-equilibrium surface vaporization is followed by a vapour explosion coupled with thermal dissociation of the biomolecules into volatile products. In deeper layers, ablation proceeds as confined boiling with mechanical tearing of the tissue matrix by the vapour pressure. The recoil stress induced at a radiant exposure of 5.4 J/cm2 is in the order of 500–900 MPa. For water and soft tissues such as liver, the recoil causes a powerful secondary material expulsion. For stronger tissues such as skin, no secondary expulsion was observed even though the recoil stress largely exceeds the static tensile strength of the tissue. Recoil-induced material expulsion results in an increase of both ablation efficiency and mechanical side effects of ablation. Theoretical modelling of the succession of phase transitions in nanosecond-laser tissue ablation and of recoil-induced material expulsion remain a major challenge for future work. PACS  42.62.Be; 79.20.Ds  相似文献   

8.
The ablation of graphite is studied as a function of laser fluence for 355, 532 and 1,064 nm wavelength generated by a nanosecond Nd:YAG laser. It has been found that in the case of lower wavelengths, the transition from the thermal ablation to the phase explosion takes place at lower laser fluences. The change of crater shape due to the effect of deep drilling in the proximity of the phase explosion threshold was observed. The calculations of plasma radiation flux to the target surface were made, and the considerable increase of absorbed energy density was found in the case of 355 nm wavelength.  相似文献   

9.
2 CrO4 are irradiated by a KrF excimer laser (λ=248 nm, FWHM=24 ns) with moderate energy density (up to 100 MW/cm2) below the plasma-formation threshold. The ablation process, including the vapor-cavity formation and the acoustic-wave propagation is visualized by laser-flash photography. The ablation thresholds are determined by measuring the generated pressure transients and vapor-phase kinetics using a broadband piezoelectric pressure transducer and a simultaneous optical-transmission probe, respectively. The mechanisms of liquid ablation and acoustic-pulse generation are investigated based on the thermoelastic behavior of the liquid medium and the evaporation dynamics. A numerical model is proposed to describe the explosive-vaporization process at high laser fluences. The computation results are compared with the experiment. In short-pulse heating, ablation can be initiated at low laser fluences by the tensile component of the thermoelastic stress without a significant increase in the liquid temperature. On the other hand, if the heating rate is rapid enough to achieve a high degree of superheating of the liquid, the abrupt increase of the homogeneous-bubble-nucleation rate leads to explosive vaporization, which then plays the major role in the ablation dynamics. The pressure transient in the liquid is generated thermoelastically at low laser fluences, but the contribution of the vapor-phase expansion and/or the recoil momentum exerted by the ablation plume becomes significant at high laser fluences. Shock waves are formed in the ambient air in the case of explosive vaporization. The propagation of these wave fronts is in good agreement with the numerical-computation results. Received: 8 February 1998/Accepted: 10 February 1998  相似文献   

10.
We develop a new synthetical model of high-power pulsed laser ablation, which considers the dynamic absorptance, vaporization, and plasma shielding. And the corresponding heat conduction equations with the initial and boundary conditions are given. The numerical solutions are obtained under the reasonable technical parameter conditions by taking YBa2CusO7 target for example. The space-dependence and time-dependence of temperature in target at a certain laser fluence are presented, then, the transmitted intensity through plasma plume, space-dependence of temperature and ablation rate for different laser fluences are significantly analyzed. As a result, the satisfactorily good agreement between our numerical results and experimental results indicates that the influences of the dynamic absorptance, vaporization, and plasma shielding cannot be neglected. Taking all the three mechanisms above simultaneously into account for the first time, we cause the present model to be more practical.  相似文献   

11.
We develop a new synthetical model of high-power pulsed laser ablation, which considers the dynamic absorptance, vaporization, and plasma shielding. And the corresponding heat conduction equations with the initial and boundary conditions are given. The numerical solutions are obtained under the reasonable technical parameter conditions by taking YBa2Cu3O7 target for example. The space-dependence and time-dependence of temperature in target at a certain laser fluence are presented, then, the transmitted intensity through plasma plume, space-dependence of temperature and ablation rate for different laser fluences are significantly analyzed. As a result, the satisfactorily good agreement between our numerical results and experimental results indicates that the influences of the dynamic absorptance, vaporization, and plasma shielding cannot be neglected. Taking all the three mechanisms above simultaneously into account for the first time, we cause the present model to be more practical.  相似文献   

12.
This work investigates evaporation kinetics -- the relation between the surface temperature and pressure during excimer laser ablation. Nickel targets are ablated by excimer laser pulses in a laser fluence range between 1 and 6 J/cm2, with the upper limit exceeding the threshold of phase explosion (5 J/cm2). The surface pressure is determined with a polyvinylidene fluoride (PVDF) piezoelectric transducer. When phase explosion occurs, the surface temperature is known to be near the thermodynamic critical temperature, therefore, by measuring the surface pressure, the surface temperature-pressure relation is determined at the threshold fluence of phase explosion. The surface temperature and the threshold fluence of phase explosion are also estimated from the measured velocity of the vapor plume and gas dynamics calculations. It is shown that, during excimer laser ablation, the temperature and pressure relation deviates significantly from the equilibrium kinetic relation.  相似文献   

13.
In the present paper, a 2D finite element model based on the heat-conduction equation and on the Hertz-Knudsen equation for vaporization was developed and used to simulate the ablation of TiC by Nd:YAG and KrF pulsed laser radiation. The calculations were performed for fluences of 8 and 10 J/cm2, which according to experimental results obtained previously, correspond to large increases of the ablation rate. The calculated maximum surface temperature of the target for both lasers is higher than the estimated value of TiC critical temperature, corroborating the hypothesis that the increase of the ablation rate is explained by the explosive boiling mechanism.  相似文献   

14.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

15.
Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (<7 J cm−2) material removal occurs via vaporization and melt displacement in aluminium. At high fluences (>7 J cm−2), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.  相似文献   

16.
17.
Theoretical study of laser ablation is usually based on the assumption that the vapor is an ideal gas. Its flow is described by gas dynamics equations [1, 2]. The boundary conditions at vaporization front are derived from the solution of the Boltzmann equation that describes the vapor flow in the immediate vicinity of the vaporizing surface (so-called Knudsen layer) [1]. This model is applicable within the range of temperatures much lower than the critical temperature of target material. In the present work, a general case is considered when the temperature of the condensed phase is comparable to or higher than the critical temperature. The dynamics of both condensed and gaseous phases can be described in this case by the equations of hydrodynamics. The dynamics of vaporization of a metal heated by an ultrashort laser pulse is studied both analytically and numerically. The analysis reveals that the flow consists of two domains: thin liquid shell moving with constant velocity, and thick low-density layer of material in two-phase state. Received: 2 March 1999 / Accepted: 28 May 1999 / Published online: 21 October 1999  相似文献   

18.
The precise characterization of plasmas generated by laser irradiation is needed for the development of ion sources. As the characteristic parameters of the expanding plasma vary with both the distance and the time, an experimental study of their evolution is appropriate for a deeper knowledge of the plasma. The purpose of this work is to study the same characteristics of laser plasma produced by ablation of a pure Cu target as a function of the distance from the target along the propagation axis of the plasma plume. We irradiated the target by a KrF laser and a lens of 15 cm focal length. As the diagnostic system, a small Faraday cup array and an axial Faraday cup were utilized to study the spatial variation in the total charge carried by plasma ions. Charge loss during the plasma expansion was observed due to the recombination of charged species, which occurs within a critical distance, relatively close to the target, where the plasma density is high enough. The critical distance was determined for different laser fluences; beyond the critical distance, the collisions among plasma particles are negligible and the ion charge remains frozen. It was observed that the critical distance increases as the laser fluence increases.  相似文献   

19.
20.
The angular distribution of the ablated material was studied during sub-ps Si laser ablation deposition using a special hemicylindrical substrate holder and different laser fluences ranging between 0.4 and 1.7 J/cm2. Scanning electron microscopy analysis of the deposited films showed that, independent of the fluence, the distribution of the deposited droplets presents two maxima. The first maximum corresponds to the average plume deflection angle value due to the local surface orientation produced by the preferential etching process. The second maximum is observed approximately at 45° with respect to the normal of the target surface, and is related to the phase explosion products that expand along the incident laser beam direction. The investigation of the twofold distribution of the sub-μm size deposited droplets is important to improve the quality of the deposited coatings. PACS 81.15.Fg; 68.55.Jk; 79.20.Ds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号