首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper briefly discusses some interesting features for the external region of the spherical symmetric mass in the new theory of gravitation VGM, Le. The theory of gravitation by considering the vector graviton field and the metric field, such as pseudo-singularity, curvature tensor, static limit, event horizon, and the radial motion of a particle. All these features are different from the corresponding features obtained from general relativity.  相似文献   

2.
魏文叶  申佳音  吴奕暐  杨礼想  薛迅  阮自强 《物理学报》2017,66(13):130301-130301
微波背景辐射的低l极矩的各向异性可能不能用微波背景辐射静止系boost到本动参考系来解释,我们推断boost对称性在宇宙学尺度上缺失,又由于单纯结合广义相对论和物质结构的标准模型不能解释星系以上尺度的引力现象,需要引入暗物质和暗能量.而迄今为止所有寻找暗物质粒子的实验给出的都是否定结果,暗能量的本质更是一个谜.因此,我们假设洛伦兹对称性是从星系以上尺度开始部分破缺,以非常狭义相对论对称群E(2)为例,用E(2)规范理论来构造大尺度有效引力理论,并分析了此规范理论的自洽性.从这些讨论中发现,当物质源即使为普通标量物质时,contortion也一般非零,非零contortion的存在会贡献一个等效能量动量张量的分布,它可能对暗物质效应给出至少部分的贡献.我们从对称性出发修改引力,有别于其他的修改引力理论.  相似文献   

3.
A new Lagrangian theory of gravitation in which the metric and the arbitrary affine connection are regarded as independent field variables has been considered. Making use of the pure geometrical objects only from the variational principle the empty field equations are derived. It is shown that the metric obeys the ordinary Einstein equations of general relativity. However, the covariant derivative of the metric tensor does not vanish, so that the vector's length is generally nonintegrable under the parallel displacement. The torsion trace vector turns out to be the natural dynamical variable, satisfying the Maxwell-like equations with tensor of homothetic curvature as the Maxwell tensor. The equations of motion are explored; they are shown to be identical to the motion of electric charge under the Lorentz force. The conservation laws are discussed.  相似文献   

4.
This paper briefly discusses some interesting features for the external region of the spherical symmetric mass in the new theory of gravitation VGM, i.e. the theory of gravitation by considering the vector graviton field and the metric field, such as pseudo-singularity, curvature tensor, static limit, event horizon, and the radial motion of a particle. All these features are different from the corresponding features obtained from general relativity.  相似文献   

5.
李光仪 《物理学报》1981,30(6):722-730
木文以Poinaré群作为引力规范群,在有挠率和曲率的空间中,讨论了当引力拉氏量包含场强的线性项与二次项时体系的运动方程,指出球对称真空静引力场方程在“宏观”极限下可以得到Schwarzchild解,因此它与目前关于广义相对论的实验验证是一致的,但在“微观”极限下,方程预示着一种新的短程作用,讨论了自旋1/2的粒子作为检测粒子在这种球对称真空静场中的运动,指出运动方程只与仿射联络的黎曼部分有关,并和广义相对论的相应方程具有同样的形式。 关键词:  相似文献   

6.
We briefly discuss the current status of Mach's principle in general relativity and point out that its last vestige, namely, the gravitomagnetic field associated with rotation, has recently been measured for the earth in the GP‐B experiment. Furthermore, in his analysis of the foundations of Newtonian mechanics, Mach provided an operational definition for inertial mass and pointed out that time and space are conceptually distinct from their operational definitions by means of masses. Mach recognized that this circumstance is due to the lack of any a priori connection between the inertial mass of a body and its Newtonian state in space and time. One possible way to improve upon this situation in classical physics is to associate mass with an extra dimension. Indeed, Einstein's theory of gravitation can be locally embedded in a Ricci‐flat 5D manifold such that the 4D energy‐momentum tensor appears to originate from the existence of the extra dimension. An outline of such a 5D Machian extension of Einstein's general relativity is presented.  相似文献   

7.
As is well known, the general theory of relativity (GTR) proceeds from the so-called equivalence principle according to which the dynamic effects of gravitation are identified with the kinematic effects of accelerated motion. In this theory, gravitation is associated with the Riemannian structure of the pseudo-Euclidean space-time (described by the metric tensor and the Riemannian connectivity and the curvature related with this tensor) specified in the four-dimensional space-time continuum. In the present work, it is first demonstrated that on the level of elementary particles (within the framework of the theory of quantized fields), the equivalence principle is violated. It is established that elementary particles with different masses (for example, electron and proton) move in the external gravitational field with different accelerations. In this connection, a new approach to the problem of gravitational interactions is suggested based on deformations of a latent dynamic system conditionally called ether that underlies elementary particle theory [2].  相似文献   

8.
The precessional frequency of a gyroscope in a reference frame that orbits about a gravitational body is compared between Einstein's tensor formulation of general relativity and the author's quaternion generalization—obtained from a factorization of the tensor form. The difference in predictions then suggests an experiment that could choose which of these formulations of general relativity is more valid in the analysis of gyroscopic motion.  相似文献   

9.
An elementary particle is described as a spherically symmetric solution of the Klein-Gordon equation and the Einstein equations of general relativity. It is found that it has a mass of the order of the Planck mass. If one assumes that the motion of its center of mass is determined by the Dirac equations, then it has a spin of 1/2.  相似文献   

10.
We continue our investigation of a variational principle for general relativity in which the metric tensor and the (asymmetric) linear connection are varied independently. As in Part I, the matter Lagrangian is minimally coupled to the connection and the gravitational Lagrangian is taken to be the curvature scalar, but we now relax the Riemannian constraint as far as possible—that is, as far as the projective invariance of the assumed gravitational Lagrangian will allow. The outcome of this procedure is a gravitational theory formulated in a volume-preserving space-time (i.e., with torsion and tracefree nonmetricity). The vanishing of the trace of the nonmetricity is due to the remaining vector constraint. We also discuss the physical significance of the relaxation of the Riemannian constraint, the possible relaxation of the vector constraint, the notion of the hypermomentum current, and its possible relation to elementary particle physics.  相似文献   

11.
It is possible, within the framework of general relativity, to define an active gravitational mass density of incoherent matter. It is not equal to the inertial mass density, except when at rest. The concept can be specialized to a single massive particle; again, its active gravitational mass is not equal to its inertial mass, except when it rests. A measurement of the impulse imparted to a test particle by a massive body passing nearby can establish the difference, and it may be possible to carry out this measurement in a laboratory. As a by-product of our computations we obtain a generalization to nonradial motion of the slowing-down effect in a Schwarzschild field.  相似文献   

12.
N. Rosen 《Foundations of Physics》1994,24(12):1689-1695
An elementary particle is described as a spherically symmetric solution of the Proca equations and the Einstein general relativity equations. The mass is found to be of the order of the Planck mass. If the motion of its center of mass is determined by the Dirac equations, it has a spin 1/2.This work is parallel to an earlier one involving the Klein- Gordon equation.  相似文献   

13.
In this paper it is shown that in general relativity the theory of motion of quadrupole test particles (QTP's) can be used to describe the energy and angular momentum absorption by detectors of gravitational waves. By specifying the form of the quadrupole moment tensor Taub's [7] equations of motion of QTP's are simplified. In these equations the terms describing the change of the mass and of the angular momentum of a QTP due to external gravitational waves are found to occur. The limiting case of the flat space-time is also briefly discussed.  相似文献   

14.
A new approach to the problem of the motion of a self-interacting massive charged particle in general relativity is presented. A charged Robinson-Trautman (RT) solution is used as a general relativity model for such a particle. Such a solution is shown to generate a unique world-line in its ownH-space. This is argued to be the asymptotically observed world-line of the particle. Using the RT dynamical relations, the equation of motion is derived, and, in the limiting case of zero curvature, it is shown to be the same as the classical Lorentz-Dirac equation of motion.This essay received an honorable mention (1977) from the Gravity Research Foundation-Ed.  相似文献   

15.
The uniform motion of the center of mass of a charged, conducting fluid, in the presence of an electromagnetic field, is derived in the first post-Newtonian approximation of general relativity. Also the source's far field metric tensor is determined, and it is expressed in terms of parameters known as three-dimensional volume integrals over its interior. These results for the above system permit the physical identification, to post-Newtonian accuracy, of the integration constants and the coordinate systems involved in the Schwarzschild and the Kerr metric tensors.  相似文献   

16.
The conclusion is made that the supplementary conditions of Pirani, Dixon, or others, which close the system of dipole equations of the general theory of relativity for a test particle and as a result make it possible to uniquely calculate the motion of such a particle, in essence determine the internal structure of the particle. The conclusion is made against the background of the solution of the problem of the multipole expansion of the tensor density along a line and a multipole formulation of the equations of motion of a body. It is shown that the Papapetrou equations can be employed to calculate the behavior of particles only if information contained in the dipole equations is used.S. Ordzhonokidze Aeronautical Institute, Moscow. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 43–48, October, 1994.  相似文献   

17.
A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl’s theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.  相似文献   

18.
The special and general relativity theories are used to demonstrate that the velocity of an unradiative particle in a Schwarzschild metric background, and in an electrostatic field, is the group velocity of a wave that we call a particle wave, which is a monochromatic solution of a standard equation of wave motion and possesses the following properties. It generalizes the de Broglie wave. The rays of a particle wave are the possible particle trajectories, and the motion equation of a particle can be obtained from the ray equation. The standing particle wave equation generalizes the Schrödinger equation of wave amplitudes. The particle wave motion equation generalizes the Klein–Gordon equation; this result enables us to analyze the essence of the particle wave frequency. The equation of the eikonal of a particle wave generalizes the Hamilton–Jacobi equation; this result enables us to deduce the general expression for the linear momentum. The Heisenberg uncertainty relation expresses the diffraction of the particle wave, and the uncertainty relation connecting the particle instant of presence and energy results from the fact that the group velocity of the particle wave is the particle velocity. A single classical particle may be considered as constituted of geometrical particle wave; reciprocally, a geometrical particle wave may be considered as constituted of classical particles. The expression for a particle wave and the motion equation of the particle wave remain valid when the particle mass is zero. In that case, the particle is a photon, the particle wave is a component a classical electromagnetic wave that is embedded in a Schwarzschild metric background, and the motion equation of the wave particle is the motion equation of an electromagnetic wave in a Schwarzschild metric background. It follows that a particle wave possesses the same physical reality as a classical electromagnetic wave. This last result and the fact that the particle velocity is the group velocity of its wave are in accordance with the opinions of de Broglie and of Schrödinger. We extend these results to the particle subjected to any static field of forces in any gravitational metric background. Therefore we have achieved a synthesis of undulatory mechanics, classical electromagnetism, and gravitation for the case where the field of forces and the gravitational metric background are static, and this synthesis is based only on special and general relativity.  相似文献   

19.
One may consider the cosmological constant Λ as a dynamical variable in general relativity. The simplest way of doing this is to couple the gravitational field to a three-index tensor. In a black hole solution Λ appears then as an integration constant (“hair”) in a similar footing with the total mass and charges of the hole. There is a quantum process of radiation of bubbles, analogous to particle emission, which spontaneously reduces Λ. The general laws of black hole thermodynamics still appear to hold.  相似文献   

20.
Mach’s principle asserts that the inertial mass of a body is related to the distribution of other distant bodies. This means that in the absence of other bodies, a single body has no mass. In this case, talking about motion is not possible, because the detection of motion is possible only relative to other bodies. But in physics we are faced with situations that are not fully Machian. As in the case of general theory of relativity where geodesics exist in the absence of any matter, the motion has meaning. Another example which is the main topic of our discussion, refers to Bohmian quantum mechanics, where the inertial mass of a single particle does not vanish, but is modified. We can call such situations in which motion or mass of a single particle has meaning, pseudo-Machian situations. In this paper, we use the Machian or pseudo-Machian considerations to clarify under what circumstances and how a Machian effect leads us to Bohmian quantum mechanics. Then, we shall get the Bohmian quantum potential and its higher order terms for the Klein-Gordon particle through Machian considerations, without using any quantum mechanical postulate or operator formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号