首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Using Hamilton variation principle, a nonlinear dynamic model of the system with a finite deforming Rayleigh beam clamped radially to the interior of a rotating rigid ring, under the assumption that the constitutive relation of the beam is linearly elastic, is discussed. The bifurcation behavior of the simple system with the Euler-Bernoulli beam is also discussed. It is revealed that these two models have no influence on the critical bifurcation value and buckling solution in the steady state. Then we use the assumption model method to analyse the bifurcation behavior of the steadily rotating Euler-Bernoulli beam and get two different types of bifurcation behavior which physically exist. Finite element method and shooting method are used to verify the analytical results. The numerical results confirm our research conclusion. Project supported by the National Natural Science Foundation of China (Grant No. 19332022) and Space High Technology Foundation of China.  相似文献   

2.
We investigate eigenvalues and eigenvectors of certain linear variational eigenvalue inequalities where the constraints are defined by a convex cone as in [4], [7], [8], [10]-[12], [17]. The eigenvalues of those eigenvalue problems are of interest in connection with bifurcation from the trivial solution of nonlinear variational inequalities. A rather far reaching theory is presented for the case that the cone is given by a finite number of linear inequalities, where an eigensolution corresponds to a (+)-Kuhn-Tucker point of the Rayleigh quotient. Application to an unlaterally supported beam are discussed and numerical results are given.  相似文献   

3.
The problem of convection in a self‐gravitating spherical shell of fluid is commonly encountered in sciences like astrophysics and geophysics (earth's liquid core). The GEOFLOW‐experiment is a project of the European Space Agency in order to perform the spherical Rayleigh‐Bénard convection problem on the International Space Station in a micro‐gravity environment: the central force field is simulated by a dielectrophoretic one. Beyond a critical Rayleigh number Rac, generically an unique spherical ℓ mode becomes unstable and only stationary or travelling waves solutions are expected near the onset. But, for a critical aspect ratio ηc two consecutive modes (ℓ, ℓ + 1) are unstable. The (1,2) and (2,3) interactions have showed a rich bifurcation diagram, in particular, we have found heteroclinic cycles predicted by the theoretical study. Because of the experiment requirements, only the (3,4) one is possible. So, this paper purposes to analyse this bifurcation in non‐rotating case in the GEOFLOWframework using the theory of bifurcation with the spherical symmetry.  相似文献   

4.
This study investigates the lateral–torsional coupling effects on the nonlinear dynamic behavior of a rotating flexible shaft–disk system. The system is modeled as a continuous shaft with a rigid disk in its mid span. Coriolis and centrifugal effects due to shaft flexibility are also included. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed mode method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work include time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The main objective of the present study is to investigate the torsional coupling effects on the chaotic vibration behavior of a system. Periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for cases with and without torsional effects. As demonstrated, inclusion of the torsional–lateral coupling effects can primarily change the speed ratios at which rub–impact occurs. Also, substantial differences are shown to exist in the nonlinear dynamic behavior of the system in the two cases.  相似文献   

5.
This paper studied the stability and Hopf bifurcation of a type of protein synthesis system with time delay and negative feedback. Firstly, it is proved theoretically that the time delay, nonlinearity in the protein production and the cooperativity in the negative feedback are key factors to generate circadian oscillation; Taking time delay as a parameter, we obtained the critical value of the time delay that Hopf bifurcation generates. Secondly, based on the center manifold and normal form theorem, we derived the formulas for determining the stability of bifurcating periodic solutions and the supercritical or subcritical Hopf bifurcation. Finally, the matlab program is used to simulate the results.  相似文献   

6.
In this paper, we investigate the stability and Hopf bifurcation of a diffusive predator-prey system with herd behaviour. The model is described by introducing both time delay and nonlocal prey intraspecific competition. Compared to the model without time delay, or without nonlocal competition, thanks to the together action of time delay and nonlocal competition, we prove that the first critical value of Hopf bifurcation may be homogenous or non-homogeneous. We also show that a double-Hopf bifurcation occurs at the intersection point of the homogenous and non-homogeneous Hopf bifurcation curves. Furthermore, by the computation of normal forms for the system near equilibria, we investigate the stability and direction of Hopf bifurcation. Numerical simulations also show that the spatially homogeneous and non-homogeneous periodic patters.  相似文献   

7.
《数学季刊》2017,(1):7-15
In this paper,we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported.By using the approximation theorem of completely continuous operators and the global bifurcation techniques,we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators,when the nonlinear term is non-singular or singular,and allowed to change sign.  相似文献   

8.
In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.  相似文献   

9.
The Rayleigh beam is a perturbation of the Bernoulli–Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli–Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials.  相似文献   

10.
This paper proposes a new approach to analysis of incompressible 3D fluid motion in Rayleigh–Benard convection in transition from laminar to turbulent regimes. Number of test series were conducted. The analysis indicated that in different test series laminar-turbulent transition follows either the subharmonic bifurcation cascade of two-dimensional tori or the subharmonic bifurcation cascade of limit cycles. Cycles up to the third period were found in the system that indicated the end of the Sharkovskii sequence. All bifurcation cascades agree with the Feigenbaum–Sharkovskii–Magnitskii (FSM) scenario.  相似文献   

11.
The transition to a chaotic plume from a two-dimensional (2D) open cavity heated from below has been investigated using numerical simulation. A large range of Rayleigh numbers (Ra) pertaining to an aspect ratio of A = 1, and Prandtl number (Pr) of Pr = 0.71 (air) is numerically investigated. It is shown that there exists a complex transition of the plume from a steady reflection symmetry to a chaotic flow with a sequence of bifurcations. As the Rayleigh number increases, the plume from the open cavity undergoes a supercritical pitchfork bifurcation from a steady reflection symmetry to a steady reflection asymmetry flow. Once the Rayleigh number exceeds 7 × 103, the plume appears as a distinct flapping namely, a Hopf bifurcation, and then as a distinct puffing. The chaotic plume has the possibility to exhibit an alternate appearance of flapping and puffing in the event the Rayleigh number exceeds 8 × 104. Moreover, the dynamics of the plume from the open cavity is discussed, and the dependence on the Rayleigh number of heat and mass transfer of the plume from the open cavity is quantified.  相似文献   

12.
We consider a fifth-order amplitude equation for a codimension-two bifurcation point in the presence of a periodically modulated Rayleigh number. It is found, by analysis of Poincaré surfaces and a construction of the bifurcation diagram, that the system exhibits strange nonchaotic behavior close to the codimension-two point. The Lyapunov exponents associated with these trajectories are calculated using a new method that exploits the underlying symplectic structure of Hamiltonian dynamics.  相似文献   

13.
We consider a fifth-order amplitude equation for a codimension-two bifurcation point in the presence of a periodically modulated Rayleigh number. It is found, by analysis of Poincaré surfaces and a construction of the bifurcation diagram, that the system exhibits strange nonchaotic behaviour close to the codimension-two point. The Lyapunov exponents associated with these trajectories are calculated using a new method that exploits the underlying symplectic structure of Hamiltonian dynamics.  相似文献   

14.
The dynamics and diagnosis of cracked rotor have been gaining importance in recent years. In the present study a model-based crack identification method is proposed for estimating crack location and size in shafts. The rotor system has been modeled using finite element method of B-spline wavelet on the interval (FEM BSWI), while the crack is considered through local stiffness change. Based on Rayleigh beam theory, the influences of rotatory inertia on the flexural vibrations of the rotor system are examined to construct BSWI Rayleigh beam element. The slender shaft and stiffness disc are modeled by BSWI Rayleigh–Euler beam element and BSWI Rayleigh–Timoshenko beam element, respectively. Then the crack identification forward and inverse problems are solved by using surface-fitting technique and contour-plotting method. The experimental examples are given to verify the validity of the BSWI beam element for crack identification in a rotor system. From experimental results, the new method can be applied to prognosis and quantitative diagnosis of crack in a rotor system.  相似文献   

15.
After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered.  相似文献   

16.
This paper deals with the linear free vibration analysis of Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. The geometry of the beam as well as the displacement field are defined using the NURBS basis functions which present the basic concept of the isogeometric analysis. A novel approach based on the fundamental relations of the differential geometry and Cauchy continuum beam model is presented and applied to derive the stiffness and consistent mass matrices of the corresponding spatial curved beam element. In the Bernoulli–Euler beam element only translational and torsional inertia are taken into account, while the Rayleigh beam element takes all inertial terms into consideration. Due to their formulation, isogeometric beam elements can be used for the dynamic analysis of spatial curved beams. Several illustrative examples have been chosen in order to check the convergence and accuracy of the proposed method. The results have been compared with the available data from the literature as well as with the finite element solutions.  相似文献   

17.
Optimal pulse fishing policy in stage-structured models with birth pulses   总被引:3,自引:0,他引:3  
In this paper, we propose exploited models with stage structure for the dynamics in a fish population for which periodic birth pulse and pulse fishing occur at different fixed time. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate (or pulse fishing time or harvesting effort) as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, period-doubling, multi-period-halving and incomplete period-doubling bifurcation, pitch-fork and tangent bifurcation, non-unique dynamics (meaning that several attractors or attractor and chaos coexist) and attractor crisis. This suggests that birth pulse and pulse fishing provide a natural period or cyclicity that make the dynamical behaviors more complex. Moreover, we show that the pulse fishing has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the population can sustain much higher harvesting effort if the mature fish is removed as early as possible.  相似文献   

18.
The influence of 16 boundary conditions on linear and nonlinear stability analyses of Rayleigh–Bénard system is reported. A Stuart–Landau amplitude equation for the Rayleigh–Bénard system between stress-free, isothermal boundary conditions is derived and the procedure used in this derivation serves as guidance for constructing an appropriate Fourier–Galerkin expansion for the other 15 boundary conditions to derive a generalized Lorenz model. The influence of the boundary conditions comes within the coefficients of the generalized Lorenz model. It is shown that the obtained generalized Lorenz model is energy conserving and for certain boundary conditions it retains features of the classical Lorenz model. Further, the principle of exchange of stabilities is shown to be valid for the present problem and hence it is the steady-state, linearized version of the generalized Lorenz model which yields an analytical expression for the Rayleigh number. On minimizing this expression with respect to wave number the critical Rayleigh number at which the onset of regular convective motion occurs in the form of rolls is determined for all 16 boundary conditions. It is found that these values are in good agreement with those of previous investigations leading to the conclusion that the chosen minimal Fourier–Galerkin expansion is a valid one. Exhibition of chaotic motion in the generalized Lorenz system at the Hopf Rayleigh number is studied. The phase-space plots which indicate a clear-cut visualization of the transition from regular convective motion to chaotic motion in the generalized Lorenz system are presented. Further, existence of a developing region for chaos (mildly chaotic motion) and windows of periodicity are captured using the bifurcation diagrams. It is concluded from the phase-space plots and the bifurcation diagrams that the generalized Lorenz model for certain sets of boundary conditions retains all the features of the classical Lorenz model. Such a conclusion cannot be made by a linear stability analysis and the need thus for a nonlinear analysis is highlighted in the paper.  相似文献   

19.
The problem of thermal convection is investigated for a layer of fluid when the heat flux law of Cattaneo is adopted. The boundary conditions are those appropriate to two fixed surfaces. It is shown that for small Cattaneo number the critical Rayleigh number initially increases from its classical value of 1707.765 until a critical value of the Cattaneo number is reached. For Cattaneo numbers greater than this critical value a notable Hopf bifurcation is observed with convection occurring at lower Rayleigh numbers and by oscillatory rather than stationary convection. The aspect ratio of the convection cells likewise changes.  相似文献   

20.
We present a certain analog for variational inequalities of the classical result on bifurcation from simple eigenvalues of Crandall and Rabinowitz. In other words, we describe the existence and local uniqueness of smooth families of nontrivial solutions to variational inequalities, bifurcating from a trivial solution family at certain points which could be called simple eigenvalues of the homogenized variational inequality. If the bifurcation parameter is one-dimensional, the main difference between the case of equations and the case of variational inequalities (when the cone is not a linear subspace) is the following: For equations two smooth half-branches bifurcate, for inequalities only one. The proofs are based on scaling techniques and on the implicit function theorem. The abstract results are applied to a fourth order ODE with pointwise unilateral conditions (an obstacle problem for a beam with the compression force as the bifurcation parameter).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号