首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emission from low-pressure microwave plasmas in the vacuum-ultraviolet (VUV) region (λ < 200 nm) was investigated in order to use these plasmas as light sources for the study of the VUV photochemistry of polyethylene (PE) and polypropylene (PP) as part of the study of plasma-polymer interaction. These polymers, immersed in low-presure oxygen, were exposed to radiation with wavelengths down to 112 nm, the cut off of magnesium fluoride used as a window to separate the polymer specimen from the plasma light source. Total oxygen incorporation in the surface [O], and the formation of hydroxyl, carbonyl, and carboxyl groups were measured using XPS in combination with chemical derivatizations, particularly their dependence upon the radiation spectrum and the oxygen pressure around the sample. In most experiments the surface oxygen concentration [O] attained a constant value that appears to be related to the initial oxidation rate; this suggests a competition between oxygen incorporation and chain scission reactions, followed by the removal of volatile oxidation products. PE is usually oxidized to a higher level than PP, the latter appearing to be more susceptible to reaction with atomic oxygen than PE. A general initiation mechanism for the VUV experiments is proposed that allows us to explain the observed differences in behavior between PE and PP, and the results obtained under different irradiation conditions. The nature of oxidation products is in both cases very similar to what is observed after direct plasma treatment of the polymers. We conclude that short wavelength radiation contributes very appreciably to the observed surface modification effects during plasma treatment of PE and PP. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The traditional solvent-based matrix-assisted laser desorption ionization (MALDI) preparation method has been used to analyze nonpolar polymers of various molecular weights. High resolution silver cationized oligomers with masses of up to 12 KDa were measured using 9.4 tesla Fourier transform mass spectrometry (FTMS) with an external ionization source. It was observed that when time-of-flight mass spectrometry was used, the spectra of polyethylene polymers showed abundant low mass fragment ions. However, these fragments were absent from the FTMS spectra.  相似文献   

3.
Due to the apolarity of the aliphatic backbones, unmodified polyolefins are scarcely miscible with most of other polymers. The functionalization of preformed polyolefins is a way which has been successfully followed to improve the polymer miscibility. The functionalization of linear low density polyethylene (LLDPE) and ethylene-propylene copolymers (EP), with diethyl maleate (DEM) and dicumyl peroxide (DCP) as radical initiator, gives products containing up to 2–5 mol % of well defined functional groups (2-diethyl succinate). Intermolecular interactions of these functional groups are characterized by comparison with suitable low-molecular-weight structural models in the presence of different solvents containing acidic hydrogen atoms. On the basis of these indication evidences of interface molecular interactions in blends with halogenated polymers are described between the functionalized polyolefins and poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF) or vinylidene fluoride-hexafluoropropene copolymer obtained in semiindustrial Brabender mixers. It is shown that a smooth functionalization of the polyolefins can modify the phase behaviour and structure of these systems. The FT-IR microanalysis supports the occurrence of partial miscibility phenomena which can be accounted for by specific intermolecular interactions involving the inserted functional groups and occurring mainly at the interfaces between domains of polyolefins and of the halogen-containing polymers.  相似文献   

4.
The method to prepare microporous chitosan membrane by selective dissolution of its blend was evaluated. Two synthetic polymers, e.g. polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG), were chosen to be the counterpart polymers. Results of Fourier transform infrared (FTIR) characterization, differential scanning calorimeter (DSC) analysis, wide angle X-ray diffraction (WAXD) measurements showed that there are special interactions between chitosan and the counterpart polymers. The pore structure induced by this method is controlled by the compatibility of the chitosan and the counterpart polymers. No pore structure was induced in the case of chitosan/polyvinyl pyrrolidone because of their molecule level miscibility and strong interaction. Highly porous structure was induced in the case of chitosan/polyethylene glycol because of their poor compatibility and multiphase structure.  相似文献   

5.
We study the mutual interactions of simple parallel polymers within the framework of density-functional theory (DFT). As the conventional implementations of DFT do not treat the long-range dispersion [van der Waals (vdW)] interactions, we develop a systematic correction scheme for the nonlocal energy contribution of the polymer interaction at the intermediate to the asymptotic separations. We primarily focus on the three polymers, polyethylene, isotactic polypropylene, and isotactic polyvinylchloride, but the scheme presented applies also more generally to other simple polymers. From first-principle calculations we extract the geometrical and electronic structures of the polymers and the local part of their interaction energy, as well as the static electric response. The dynamic electrodynamic response is modeled on the basis of these static calculations, from which the nonlocal vdW interaction of the polymers is extracted.  相似文献   

6.
For chemical recycling of plastic refuses a cascade of cycled-spheres reactors has been developed combining separation and decomposition of polymer mixtures by stepwise pyrolysis at moderate temperatures. In low-temperature pyrolysis, mixtures of poly(vinyl chloride), polystyrene and polyethylene or polystyrene, polyamide 6 and polyethylene have been separated into hydrogen chloride, styrene and polyamide 6 and aliphatic compounds from polyethylene decomposition. Compared with the low-temperature pyrolysis of the single components, some interactions between the polymers are found when pyrolyzing mixtures. Some mechanistic aspects of these interactions are discussed.  相似文献   

7.
Field desorption mass spectrometry (FD-MS) has been evaluated for the analysis of low molecular weight polyethylene by using samples in the molecular weight range 600–2000 u as determined by gel permeation chromatography. The repeat units and end groups were characterized by FD-MS, but it was demonstrated that accurate molecular weight distribution data cannot be obtained for polyethylene by FD-MS because there is mass discrimination against the higher molecular weight polymers.  相似文献   

8.
Thin-layer chromatography (TLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were combined to achieve characterization of polyether mixtures. Three polyethers, polyethylene glycol (PEG), polypropylene glycol (PPG) and polytetramethylene glycol (PTMG), or mixtures of these compounds, were studied. One shortcoming of mixture analysis of synthetic polymers using MALDI-MS is that individual polymers in the mixture may display different detection sensitivities. For example, the MALDI mass spectrum of an equimolar mixture of PEG, PPG and PTMG displayed a high intensity of PPG ions, while no PTMG ions were detectable; however, PTMG ions were detected after the mixture had been separated by TLC. This combined TLC and MALDI-MS analysis of a PPG polymer bearing reactive epoxy groups showed that the polymer contained byproducts with different end-groups. These byproducts were identified as chloro-substituted polymers formed during polymer synthesis. Our study shows TLC to be a rapid and low-cost separation technique, and that it can be combined with MALDI-MS to achieve effective analysis of synthetic polymers.  相似文献   

9.
The interactions between two polymers, poly(vinyl chloride) and solution chlorinated polyethylene, with a series of solvents have been studied using inverse gas chromatography. Values of the interaction parameters show the importance of specific interactions in these systems. From these values and studies of polymer mixtures, values of the polymer-polymer interaction parameter have been calculated. The values were small in agreement with values of the heat of demixing of the two polymers reported previously.Measurements using PTFE and kaolin as the substrate for these polymers show the importance of the substrate. Results suggest that the pore structure of PTFE leads to problems in obtaining reliable results.By making measurements for the mixed polymer system over a range of temperatures, it has been found possible to detect the temperature of phase separation. The phase diagram obtained agrees well with results reported previously.  相似文献   

10.
Micellar catalysis with various polyoxyethylated compounds was used to synthesize sodium allyl sulfonate by the reaction of allyl chloride with an aqueous solution of sodium sulfite. It was shown that methoxy polyethylene glycol methacrylates and water soluble polymers based on these compounds are surfactants and can be used to intensify the synthesis of sodium allyl sulfonate, which is of interest in the case of its subsequent application to obtain copolymers with methoxy polyethylene glycol methacrylates.  相似文献   

11.
Surface Modification of Textile Fibers and Cords by Plasma Polymerization   总被引:12,自引:0,他引:12  
In this paper we report on the treatment of industrial fibers and cords by means of plasma polymerization techniques. Coatings of plasma-polymerized pyrrole or acetylene were deposited on aramid fibers, aramid cords and polyester cords. The equipment was a custom-built semi-continuous reactor operated on a pulsed DC glow discharge. The fibers and cords were tested for adhesion to various polymers such as tire cord skim stock rubber compounds and epoxy adhesives. Standard industrial pull-out force adhesion measurement techniques were used. The deposition conditions of the plasma polymer films were varied within wide limits. It was found that, in general, films deposited under low-power and high-pressure conditions performed better than films prepared under high-power and low-pressure conditions. For some systems pulsing of the discharge power improved the performance further. For all systems studied, the optimized plasma polymer surface modification outperformed current industrial standards. The plasma-polymerized coatings were characterized by various techniques and the excellent performance results are explained in a tentative model based on the molecular structure of the films. This structure was found to be strongly dependent on the discharge conditions.  相似文献   

12.
Vacuum Ultraviolet Irradiation of Polymers   总被引:2,自引:0,他引:2  
The interest in incoherent sources for wavelength-selective photochemistry has increased lately, but little is still known about the behavior of polymers when exposed to far UV and vacuum UV (VUV) radiation. The same dearth of information exists regarding UV (VUV) radiation emitted by low-pressure plasmas during polymer treatment. In order to study VUV-UV effects on several polymers (polyethylene - PE, polystyrene - PS, hexatriacontane - HTC, and poly(methyl methacrylate) - PMMA), we have used the well-characterized emissions from hydrogen (broad-band emission) and hydrogen/argon mixture (near-monochromatic radiation) plasmas as light sources. During irradiation, samples were kept under vacuum or in a flow of pure oxygen at low pressure; in both cases the radiation fluxes at the sample position have been precisely determined by careful spectroscopic calibration experiments. We have employed a quartz crystal microbalance (QCM) to measure in-situ any possible mass change of the various polymers. Following irradiation, samples were analysed by ellipsometry (for thickness and refractive index), X-ray photoelectron spectroscopy (XPS, to evaluate the near-surface composition and content of various functional groups), and atomic force microscopy (AFM, for surface topography and roughness measurements).  相似文献   

13.
The thermooxidative degradation of four well known polymers, polyethylene (PE), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA), was carried out in a thermogravimetric (TG) analyser, at various temperatures (in the 473–533 K range), in isothermal heating conditions. The resulting set of experimental TG data was used to determine the apparent activation energy (Ea) of degradation through two isothermal literature methods, as well as through a very simple method we set up, based on the direct regression of the experimental mass loss data, in order to verify the general applicability of our method to various polymers. The results from different methods were in good agreement. Degradation experiments in dynamic heating conditions, which were also performed, gave Ea values in good agreement with those in isothermal heating conditions for PS, PC and PMMA, while for PE a large discrepancy was observed, which was discussed and interpreted. The results suggested the general applicability of our method to all polymers, independently on their structure and degradation mechanism. A long-term (about 13 months) isothermal degradation experiment was also carried out with the same polymers at relatively low temperature (423 K). Only PE and PS evidenced appreciable mass loss in the investigated period, but the experimental data were not in agreement with those from the short-term degradations at higher temperatures, thus suggesting different degradation kinetics, and a low reliability of the lifetime predictions for polymers in service based on experiments at higher temperatures.  相似文献   

14.
Three kinds of amphiphilic polymers, including the tri-block copolymer of (polyethylene oxide)–(polypropylene oxide)–(polyethylene oxide) (I, EPTBP), the comb-like copolymer of polysiloxane with polyethylene oxide and polypropylene oxide side chains (II, ACPS) and the hyperbranched star copolymer of polyester-g-methoxyl polyethylene glycol (III, HPE-g-MPEG), were blended with PVDF to fabricate porous membranes via a phase inversion process, respectively, and the effects of the different structures of the amphiphilic polymers on the properties of the blend membranes were compared. The membranes were characterized by scanning electron microscopy (SEM), elemental analysis, X-ray photoelectron spectroscopy (XPS) analysis, mercury porosimetry, water contact angle measurements, etc. The anti-fouling properties of the prepared membranes were evaluated by static and dynamic bovine serum albumin (BSA) adsorptions. Specially, the stabilities of these amphiphilic polymers in the final membranes were estimated by continuous leaching tests. At the same time, the properties of the membranes using the amphiphilic polymers as modifiers were compared with those of the membrane using poly(ethylene glycol) (PEG) as modifier.  相似文献   

15.
Electrospray laser desorption ionization mass spectrometry (ELDI/MS) was used to rapidly distinguish authentic banknotes from counterfeits of the US dollar and the New Taiwan dollar. The banknotes' surfaces were irradiated with a pulsed ultraviolet laser, after which the desorbed ink compounds entered an electrospray plume and formed ions via interactions with charged solvent species. Authentic banknotes were found to differ from their counterfeit equivalents in their surface chemical compositions. The detected chemical compounds included various polymers, plasticizers and inks; these results were comparable with those obtained using solvent extraction followed by electrospray ionization mass spectrometry analysis. Because of the high spatial resolution of the laser beam, ELDI/MS analysis resulted in minimal damage to the banknotes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) imaging of polystyrenes with various molecular masses was applied to study spatial molecular mass distribution of polymers in sample spots prepared by the “dried droplet” method. When different solvents and target surfaces were examined, a segregation of single homologous polymers was observed depending upon the evaporation rate of the solvent. For the observed patterns left by the evaporating droplet, a hypothesis is offered taking into account different hydrodynamic interactions and diffusion. The results illustrate that spot preparation using the conventionally “dried droplet” method is prone to artifacts and should be avoided for reliable and reproducible MALDI mass spectrometry experiments with regards to the determination of molecular masses and mass distributions.  相似文献   

17.
Characterization of synthetic polyelectrolytes by capillary electrophoresis   总被引:1,自引:0,他引:1  
Capillary electrophoresis in entangled polymer solutions was applied to determine the molecular mass and polydispersity of polyelectrolytes. The separation selectivities of different polyethylene glycols as buffer additive can be correlated to their average molecular mass. A universal curve correlating the selectivity and the molecular mass could be obtained by using the instrinsic viscosity of the polyethylene glycol. The separation of poly(2-vinylpyridine) standards was compared to the separation of poly(4-vinylpyridine) standards. An indirect detection system was developed to characterize the cationic polyelectrolyte polydiallyldimethyl ammonium chloride. Various polymers with oppositely charged groups (polycarboxybetaines) were investigated with respect to structure dependence, pH dependence and molecular mass dependence of interand intramolecular association.  相似文献   

18.
Mechanical properties number themselves among the most important properties of any polymeric material used in engineering applications. The Molecular Mechanics approach has been used to calculate the mechanical moduli of various polymers, but this approach has the limitation of requiring experimental densities and neglecting both entropy contributions and local volume fluctuations which can be significant in condensed phase polymers such as glasses and melts. Although constant stress molecular mechanics can provide an estimate of the bulk density, constant stress molecular dynamics (CSMD) can overcome all these limitations. However, CSMD is limited by an inherently short simulation time scale. CSMD was used to calculate the bulk moduli, Young's moduli and density of various amorphous polymers, including: polyethylene, poly(propylene), polystyrene, poly(vinyl chloride), poly(ethylene terephthalate), poly(butylene terephthalate), nylon 6, poly(methyl methacrylate), polydimethylsiloxane, bisphenol-A polycarbonate, poly(phenylene sulfide). Results indicate that CSMD is a useful tool in characterizing mechanical properties of amorphous polymers despite this time scale limitation.  相似文献   

19.
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric‐pressure electrospray are accelerated in vacuum by several kV and impact the sample deposited on the metal substrate. In this study, several industrial synthetic polymers, e.g. polystyrene (PS) and polyethylene glycol (PEG) were analyzed by EDI/SIMS mass spectrometry. For higher molecular weight analytes, e.g. PS4000 and PEG4600, EDI/SIMS mass spectra could be obtained when cationization salts are added. For the polymers of lower molecular weights, e.g. PEG300 and PEG600, they could be readily detected as protonated ions without the addition of cationization agents. Anionized PS was also observed in the negative ion mode of operation when acetic acid was added to the charged droplet. Compared to matrix‐assisted laser desorption/ionization (MALDI), ion signal distribution with lower background signals could be obtained particularly for the low‐molecular weight polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
High energy radiation causes deep modification of exposed polymers. In the irradiated polymers, the main macroscopic process is the formation of free radicals. The “cooled” electron distribution at the temperature of liquid nitrogen will develop the existence of various electron gaps with certain depths by smooth heating up to room temperature. In this paper, low density polyethylene, high density polyethylene and polypropylene were subjected to the action of gamma rays for causing structural modifications. The glow curves of quantum emission were recorded by slow heating from 106 to 286 K. The characteristic shoulders were obtained, which were ascribed to various electron traps consisting of unsaturation or carbonyl groups. For depicting the influence of molecular structures, the influence of CH3 number/100 carbon atoms on the intensity of radiothermoluminescence (RTL) signal was studied on three types of LDPEs. A sharp decrease of maximum RTL intensity at advanced branching was pointed out. A mechanism of RTL emission is based on the present measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号