首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrooxidation of dopamine (DA), uric acid (UA) and their mixture on a gold electrode modified by a self-assembled monolayer of 2-(3,4-dihydroxyphenyl)-1,3-dithialone has been studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). CV was used to investigate the redox properties of the modified electrode at various scan rates and the apparent charge transfer rate constant (k(s)), and transfer coefficient (α) were calculated. The mediated oxidation of DA at the modified electrode under the optimum condition (pH = 7.0) in CV occurs at a potential about 220 mV less positive than that of the unmodified gold electrode. The values of electron transfer coefficients (α), catalytic rate constant (k) and diffusion coefficient (D) were calculated for DA, using electrochemical methods. DPV exhibited a linear dynamic range over the concentration range of 0.2-250.0 μM and a detection limit (3σ) of 0.07 μM for DA. The modified electrode was used for simultaneous determination of DA and UA by DPV. The results showed that the electrode is highly efficient for the catalytic electrooxidation of DA and UA, leading to a remarkable peak resolution (~350 mV) for two compounds. The electrode was used for the determination of DA in an injection sample.  相似文献   

2.
膜电阻对自组装膜修饰电极电化学行为的影响   总被引:4,自引:1,他引:3  
崔晓莉  江志裕 《电化学》2001,7(3):270-275
应用循环伏安和交流阻抗技术研究了 16烷基硫醇自组装膜修饰的金电极在Fe(CN) 63 - /Fe(CN) 64 - 溶液中的电化学行为 .无“针孔”缺陷的自组装膜对溶液与基底间的界面电子转移具有强烈的阻碍作用 ,当过电位较大时 ,In(I/ η)对 η1/2 之间具有良好的线性关系 .通过对Au/SAM /Hg模拟体系的电流———电压曲线进行测定 ,得到了自组装膜膜电阻的特征 .指出由于膜电阻的存在 ,自组装膜修饰电极在Fe(CN) 63 - /Fe(CN) 64 - 溶液中的行为实质上反映了膜自身的电阻特征  相似文献   

3.
An amperometric pesticide biosensor has been devised by the composite assembly of silver nanoparticles with avidin and biotinylated acetylcholinesterase (AChE) on gold electrodes modified with a biotin‐terminated self assembly monolayer (SAM). This composite assembly strategy takes use of the biospecific recognition avidin with the biotin from the SAM‐terminals and biotinylated AChE, as well as the electrostatic interaction between silver nanoparticles with negatively charged citrate shell and avidin with encounter charge at pH 7.2. The construction process of the composite interface on gold was monitored by surface plasmon resonance (SPR), and its structure was characterized by attenuated total reflection Fourier‐transform infrared spectra, atomic force microscopy and UV‐vis spectra. The composite interface shows excellent electron transfer ability, as characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimum conditions a quantitative measurement of organophosphate pesticide dimethoate was achieved with the linear range of 0.05 μM to10 μM and the detection limit 0.01 μM, taken as the concentration equivalent to a 10% decrease in signal. Silver nanoparticles conjugated biotin‐avidin system represents a simple and functional approach to the integration of electrode sensing interface with improved biocompatibility and electron transfer ability, which may provide an analytical access to a large group of enzymes for bioelectrochemical application.  相似文献   

4.
The penicillamine (Pen) self-assembled monolayer (SAM) modified gold electrode (Pen/Au) is demonstrated to catalyze the electrochemical response of dopamine (DA) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (k(s)) is 3.88 x 10(-3) cm/s at the self-assembled electrode. The electrode reaction is a quasi-reversible process. The oxidation peak of DA can be used to determine the concentration of DA. The peak current and the concentration of DA are a linear relationship in the range of 2.0 x 10(-5) M to 8.0 x 10(-4) M. The detection limit is 4.0 x 10(-6) M. By ac impedance spectroscopy the apparent electron transfer rate constant (k(app)) of Fe(CN)(3-)/Fe(CN)(4-) at the Pen/Au electrode was obtained as 2.08 x 10(-5) cm/s. The Pen SAM was characterized with X-ray photoelectron spectroscopy (XPS), grazing angle FT-IR spectroscopy and contact angle goniometer.  相似文献   

5.
表面活性剂作用下谷胱甘肽单分子膜的离子门响应   总被引:4,自引:0,他引:4  
将谷胱甘肽自组装在金电极表面,在表面活性剂存在下,以铁氰化钾及苯醌作为探针,用循环伏安法研究了修饰在金电极表面的谷胱甘肽单分子膜的电化学行为。实验发现在阳离子表面活性剂作用下,谷胱甘肽膜存在离子门行为,修饰电极表面的电子传输随阳离子表面活性剂浓度的增加而增加。阴离子表面活性剂对氧化还原探针在修饰电极上的电化学响应显示出一定的抑制作用。  相似文献   

6.
《Electroanalysis》2003,15(12):1060-1066
The voltammetric behavior of methylene blue (MB) at thiol self‐assembled monolayers modified gold electrodes (SAMs/Au) has been investigated. MB exhibited a redox peak at about ?0.35 V (vs.SCE) in alkaline solution at bare gold electrodes. When the gold electrodes were modified with thiol SAMs, the peak grew due to the accumulation of MB at SAMs. With the solution pH rising, more MB was accumulated, hence the peak height increased, which differed from that at bare gold electrodes. The electrode process at SAMs/Au featured the characteristics of adsorption and/or electrode reaction controlled. The enhancing action of glutathione monolayer (GSH SAM), 3‐mercaptopropionic acid monolayer (3MPA SAM) and other thiol SAMs was compared. Among these, GSH SAM made the MB peak increase more. At GSH SAM/Au, the peak height varied linearly with MB concentration over the range of 2 μM to 400 μM. So this can be developed for the determination of MB and studies concerned. The accumulation behavior caused by GSH SAM and native fish sperm dsDNA was compared. The interaction between DNA and MB was also discussed under this condition.  相似文献   

7.
A polymer film based on polymeric ionic liquid, which was poly(1‐vinyl‐3‐butylimidazolium chloride) (poly(ViBuIm+Cl?)for short), was firstly used as matrix to immobilize hemoglobin (Hb). FTIR and UV‐vis spectra demonstrated that the native structure of Hb was well preserved after entrapped into the polymer film. The Hb immobilized in the poly(ViBuIm+Cl?) film showed a fast direct electron transfer for the Hb‐FeIII/FeII redox couple. Based on the direct electron transfer of the immobilized Hb, polyvinyl alcohol (PVA)/Hb/poly(ViBuIm+Cl?)/GC electrode displayed good sensitivity and wide linear range for the detection of H2O2. The linear range of the PVA/Hb/poly(ViBuIm+Cl?)/GC electrode to H2O2 is from 3.5 to 224 μM with a limit of detection of 1.17 μM. Such an avenue, which integrated polymeric ionic liquid and redox protein via a simple method, may provide a novel and efficient platform for the fabrication of biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

8.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

9.
In this paper, the electrochemical current rectification phenomenon exhibited at an electrochemical interface constituted by a glassy carbon electrode covered with a bilayer of polymer films is discussed. The authors have shown that Methylene Blue (MB) redox species can be confined to a very thin insulating polymer film formed from orthophenylene diamine. The poly(opd) film exhibited excellent blocking properties to redox molecules in solution. On the other hand, the insulating poly(opd) film trapped with MB could mediate electron transfer between the redox molecules in solution and the electrode. Further, a second polymeric layer (Nafion film) trapped with ferrocene redox species was formed as the outer layer over the inner poly (opd) film containing MB. This bilayer-modified electrode, due to the significant difference in the redox potentials of the MB and ferrocene species immobilized in the inner and outer layers, respectively, exhibits unidirectional current flow and the results of the voltammetric investigations on the modified electrodes are described in this communication.  相似文献   

10.
Direct electrochemistry of horse heart cytochrome c (cytc) has been obtained at a gold electrode constructed by self‐assembling fumed silica particles (FSPs) onto a silane monolayer. A pair of well‐defined and nearly symmetrical redox peaks of cytc is obtained at the FSPs film modified gold electrode. Cyclic voltammetry (CV) and tapping‐mode atomic force microscopy (AFM) are used to characterize the FSPs film modified electrode, showing that the FSPs can provide a favorable microenvironment for cytc and facilitate the direct electron transfer between the cytc and the gold electrode, which may propose an approach to realize the direct electrochemistry of other proteins.  相似文献   

11.
The metallothioneins (MT) self-assembled monolayer modified gold electrode (MT/Au) is demonstrated to catalyze the electrochemical response of dopamine (DA) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (k(s)) is 6.97 x 10(-3) cm s(-1) (20 degrees C) at the self-assembled electrode. The electrode reaction is a quasi-reversible process. The oxidation peak of DA can be used to determine the concentration of DA. The peak current and the concentration of DA follow a linear relationship in the range of 2.0 x 10(-5) M to 8.0 x 10(-4) M. The detection limit is 6.0 x 10-6 M. By ac impedance spectroscopy, the apparent electron transfer rate constant (k(app)) of Fe(CN)6(3-)/Fe(CN)6(4-) at the MT/Au electrode was obtained as 2.0 x 10(-5) cm s(-1). The MT/Au was characterized with grazing angle FT-IR spectroscopy and contact angle goniometry.  相似文献   

12.
The redox properties of a monolayer of alkanethiolate-protected gold nanoclusters (MPCs) constructed on a gold slide electrode was studied in 1,2-dichloroethane (DCE) electrolyte solutions. The influence of the electrostatic interaction between attached MPCs and the substrate electrode on the absolute standard redox potential of MPCs was theoretically considered and studied experimentally.  相似文献   

13.
Kan XW  Deng XH  Zhang WZ  Wang GF  Li MG  Tao HS  Fang B 《Annali di chimica》2005,95(7-8):593-600
The preparation of a gold electrode modified by ferrocenecarboxylic acid (FcA) covalently bound to L-cysteine self-assembled monolayer (FcA-SAM) is described. The modified electrode shows an excellent electrocatalytic activity for the oxidation of hydroquinone (QH2) and accelerates the electron transfer rate. The anodic overpotential is reduced by ca. 290 mV compared to those obtained at bare gold electrodes. The charge transfer coefficient and the apparent surface electron transfer rate constant for the redox couple of Q/QH2 at the modified electrode are found to be 0.425 and 0.96 s(-1), respectively. The catalytic current response of DPV increases linearly with the QH2 concentration from 5.7 x 10(-7) to 3.2 x 10(-4) M. The estimation of QH2 in a simulative sample is satisfactory. The method is simple, quick, and sensitive.  相似文献   

14.
Wang GF  Deng XH  Zhang WZ  Fang B 《Annali di chimica》2006,96(3-4):247-252
A novel renewable O2 sensor based on the direct electron transfer of hemoglobin (Hb) is proposed. Hb was immobilized on a gold nanoparticles (GNP) associated with a 1,4-benzenedimethanethiol (BDT) monolayer which were modified the electrode. The direct electrochemistry of Hb was investigated by electrochemical methods and cyclic voltammetric showing a pair of redox peaks of Hb. The high efficiency of the Hb/GNP/BDT modified gold electrode towards the catalytic electro-reduction of oxygen has been observed and the potential application of Hb/GNP/BDT modified gold electrode as biosensors to monitor O2 is proposed. The electrocatalytic response showed a linear dependence on the O2 concentration ranging from 2.0 to 40.0 micromol/L.  相似文献   

15.
借助巯基试剂,在纳米金颗粒表面修饰生物活性物质Mb,制备保持有Mb生物活性的功能化金纳米巯基乙胺-Au NPs-Mb.采用UV-Vis、FTIR光谱和投射电镜表征其结构,该纳米颗粒分布均匀且粒径均一,并显著改善了金纳米颗粒团聚现象.以Mb功能化金纳米为基元,采用单层自组装及层层自组装方式将其修饰到裸金电极表面.各Mb或Mb-Cu电极的电化学测试并未借助电子传递媒介.配位Cu~(2+)后,修饰有Mb的单层及层层自组装修饰的催化还原能力均显著提升.其中Cu~(2+)配位的{巯基乙胺-Au NPs-Mb}3/Au修饰电极作为一种新型H2O2生物传感器,响应时间大约为2 s,米氏常数KappM为0.787 mmol/L,表现出了较强的还原H2O2的催化活性,且稳定性较好.  相似文献   

16.
Ye D  Luo L  Ding Y  Chen Q  Liu X 《The Analyst》2011,136(21):4563-4569
A novel nitrite sensor was fabricated based on a graphene/polypyrrole/chitosan nanocomposite film modified glassy carbon electrode. The nanocomposite film was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron transfer behaviour of the modified electrodes was investigated in [Fe(CN)(6)](3-)/(4-) redox probe using cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse voltammetry and amperometry were used to study the electrochemical properties of the proposed sensor. Under optimum conditions, the sensor exhibited good reproducibility and stability for nitrite determination. Linear response was obtained in the range of 0.5-722 μM with a detection limit of 0.1 μM (S/N = 3) for nitrite determination.  相似文献   

17.
报道了硫醇-磷脂混合双层膜的循环伏安和电化学交流阻抗行为研究,并用电化学方法考察了蜂毒素与其相互作用,实验中通过冷冻表面沾有磷脂溶液的硫醇单层膜制备混合双层膜,研究表明双层膜在电极表面形成致密的绝缘层,阻碍了电极表面的电子传递,在双层膜体系上引入的蜂毒素可在膜表面上形成孔洞,破坏膜的绝缘性,降低膜电阻,增加膜电容,使带负电的探针Fe(CN)6^3-的氧化还原反应速度加快。  相似文献   

18.
p-Aminothiophenol (PATP) and humic acids (HA or HAs) were applied jointly as the electron transfer accelerants of redox reactions of cytochrome c (Cyt c) on gold electrodes. The electrochemical properties of the modified electrodes were studied by field emission scanning electron microscope, ultraviolet-visible spectroscopy, electrochemical impedance spectroscopy, Raman spectroscopy and cyclic voltammetry. The immobilized Cyt c displayed a couple of stable and well-defined redox peaks with a formal potential of −0.101 V (vs. SCE) in pH 7.0 phosphate buffer solution. Cyt c adsorption is in the form of a monolayer with average surface coverage of 5.28 pmol cm−2. The electron transfer rate constant was calculated to be 2.14 s−1. It indicate that the HA film acted as a good adsorption matrix for Cyt c and an excellent accelerant for the redox of Cyt c. The Cyt c-HA modified gold electrode showed a new couple of well-marked redox peaks when 2,4-dichlorophenol was added to the test solution.  相似文献   

19.
Self-assembled monolayer (SAM) on gold electrode has been extensively studied in electrochemistry. It is a good model for study the electron transfer through the SAM from metal to redox couple in the solution or tethered on the surface of monolayer. For a pinehole-free monolayer, electron tunneling is considered as the mechanism of electron transfer through the film. The detail of the process in electrochemistry is not clear though there are a lot of publications on SAM research. In this paper,the electrochemical behavior of pinehole-free alkanethiol modified SAM electrode was investigated at different potential in the solution containing various concentration Fe(CN)63-/4- ions. It was found that the apparent resistance could be attributed mainly to the resistance of SAM film.  相似文献   

20.
The interaction of redox enzymes with electrodes is of great interest for studying the catalytic mechanisms of redox enzymes and for bioelectronic applications. Efficient electron transport between the biocatalysts and the electrodes has achieved more success with soluble enzymes than with membrane enzymes because of the higher structural complexity and instability of the latter proteins. In this work, we report a strategy for immobilizing a membrane-bound enzyme onto gold electrodes with a controlled orientation in its fully active conformation. The immobilized redox enzyme is the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough, which catalyzes H(2)-oxidation reversibly and is associated with the cytoplasmic membrane by a lipidic tail. Gold surfaces modified with this enzyme and phospholipids have been studied by atomic force microscopy (AFM) and electrochemical methods. The combined study indicates that by a two-step immobilization procedure the hydrogenase can be inserted via its lipidic tail onto a phospholipidic bilayer formed over the gold surface, allowing only mediated electron transfer between the enzyme and electrode. However, a one-step immobilization procedure favors the formation of a hydrogenase monolayer over the gold surface with its lipidic tail inserted into a phospholipid bilayer formed on top of the hydrogenase molecules. This latter method has allowed for the first time efficient electron transfer between a membrane-bound enzyme in its native conformation and an electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号