首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A gamma-spectrometric method using an intrinsic high resolution germanium detector has been developed for the determination of isotope ratios of plutonium from samples in solution form. The method is based on the assay of low energy gamma-rays of238Pu,239Pu,240Pu and241Pu and does not require the use of branching intensities or the knowledge of detection efficiencies for different gamma rays. Since low energy gamma-rays are used, the effect of241Am has also been studied. It is found that results are not affected up to 0.5 wt% of241Am in plutonium samples. An accuracy of 3% is achievable in the determination of240Pu/239Pu and241Pu/239Pu atom ratios as demonstrated by carrying out measurements on isotopic standards of plutonium.  相似文献   

2.
A combination of alpha-spectrometry, liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS) was used for the determination of plutonium isotopes. 238Pu and 239+240Pu were measured by alpha-spectrometry after separation of Pu by anion-exchange using 236Pu tracer as recovery monitor. After alpha-measurement, one part of the sample was dissolved for determining 241Pu by LSC. Another part was used for the measurement of the 240Pu/239Pu atom ratio by AMS at VERA. Thus, it was possible to obtain complete information on the Pu isotopic composition of the samples. This method was applied to environmental reference samples and samples contaminated from nuclear reprocessing.  相似文献   

3.
The origin and release date of environmental plutonium have been assessed by the measurement of plutonium and americium isotopic composition. The applicability and sensitivity of different plutonium isotope ratios, 240Pu/239Pu and 241Pu/239Pu measured by inductively coupled plasma sector field mass spectrometry and 238Pu/239Pu analysed by alpha spectrometry, have been evaluated for origin determination in several types of environmental samples. With use of mixing models the contribution of different sources (e.g. global fallout or Chernobyl) can be calculated. By the measurement of the 241Am/241Pu isotope ratio, the release date (i.e. formation of 241Pu by irradiation) can be estimated in environmental samples, which is an important parameter to distinguish recent plutonium release from previous (e.g. Chernobyl) emissions.  相似文献   

4.
A reverse isotope dilution alpha spectrometric /R-IDAS/ method using239Pu as a spike is described for the determination of plutonium concentration in high burn-up fuel samples wth238Pu/(239Pu+240Pu) alpha activity ratio >0.5, without resorting to any purification from241Am and a bulk of other impurities. It involves the addition of a pre-clibrated spike solution to a known aliquot of the plutonium sample solution followed by source preparation using TEG as a spreading agent. The results obtained on a number of plutonium samples containing 20–80% of241Am /alpha activity wise/ using this method are compared with those achieved by R-IDAS using purification with TTA, with respect to precision and accuracy. Precision and accuracy of 0.5% are demonstrated. This method eliminates the need of any separation and purification of plutonium from241Am and a bulk of other impurities like uranium.  相似文献   

5.
A method is described for the determination of plutonium concentration in the presence of a bulk of other impurities by isotope dilution mass spectrometry /IDMS/ using239Pu as a spike. The method involves the addition of239Pu spike / 90 atom%/ to samples with239Pu / 70 atom%/ and vice versa. After ensuring chemical exchange between the sample and the spike isotopes, plutonium is purified by conventional anion exchange procedure in 7M HNO3 medium.239Pu/240Pu atom ratio in the purified spiked sample is determined with high precision /better than 0.1%/ using a thermal ionization mass spectrometer. Concentration of plutonium in the sample is calculated from the changes in239Pu/240Pu atom ratio in the spiked mixture. Results obtained on different plutonium samples using239Pu as a spike are compared with those obtained by the use of242Pu spike. Precision and accuracy comparable to those achieved by using242Pu are demonstrated. The method provides an alternative in the event of non-availability of enriched242Pu or244Pu required in IDMS of plutonium and at the same time, offers certain advantages over the use of242Pu or244Pu spike.  相似文献   

6.
The concentrations of238Pu and239, 240Pu were determined in 12 sediment samples collected from the bed of the Romanian Danube river and Black Sea coast during June–September 1994. After the sample material has been properly prepared and242Pu tracer added, plutonium was separated from americium and curium by anion exchange. After electrodeposition on stainless steel discs the elements were counted with an -spectrometry system with silicon surface-barrier detectors. The239, 240Pu concentrations range between 150 and 800 mBq kg–1 dry, while the238Pu concentrations rise up to max 150 mBq kg–1 dry. Although the chemical yields are rather low (51%) we appreciate the results as valuable since they report for the first time the distribution of the plutonium contamination along the Danube river and the Black Sea coast-Romanian sector.  相似文献   

7.
Plutonium isotopes were measured by alpha-spectrometry and ICP-MS in sediment samples from two European lakes: Blelham Tarn in U.K. and Stechlin lake in Germany. The ICP-MS measurements were made after alpha-spectrometry counting of the planchets. The planchets were prepared by traditional electrodeposition method after radiochemical extraction, separation and purification of the Pu fraction. A short radiochemical separation using plutonium selective resin, between the two spectrometry measures, is presented. The results show that these two complementary methods are in good agreement, the plutonium activity concentrations are the same. Alpha-spectrometry allows the 238Pu determination and ICP-MS individual measurement of 239Pu and 240Pu. 238Pu/239+240Pu and 240Pu/239Pu ratios are calculated to determine the plutonium contamination source. With the results of these two techniques, it could be demonstrate that the plutonium is of global fallout origin.  相似文献   

8.
Summary A thermal ionization mass spectrometry (TIMS) method is described for the determination of ultra-trace levels of plutonium isotopes in human urine samples. The method has been validated through the analysis of artificial urine samples spiked with known amounts of 239Pu ranging from 2.5 fg to 50 fg (6-115mBq). A slight positive bias of 1.7%-2.7% was determined, with a relative precision of 2.2% at 50 fg, increasing to 2.7% for 5-25 fg 239Pu. The detection limit of the method was 0.53 fg (1.2mBq) 239Pu, and the instrumental detection limit was at least 0.1 fg. The determination of the isotopic signature of the sample with 239Pu, 240Pu, and 241Pu amounts of several femtograms is possible, and was demonstrated with the determination of the 240 to 239 ratio in an inter-laboratory sample comparison. The method is relatively free from interferences, 95% of sample preparations were acceptable both in terms of chemical recovery and lack of isobaric interference. The isotopic abundance of the 242Pu SRM 4334E of the National Institute of Standards and Technology (NIST) was also determined by TIMS and was found to be 99.99967 atom% 242Pu.  相似文献   

9.
Simultaneous isotopic analysis of uranium and plutonium using thermal ionization mass spectrometer coupled to a multi-collector detection assembly with 9 Faraday cups has been reported earlier. Subsequently investigations have been carried out (1) to understand the applicability of correction methodologies available to account for the contribution of238Pu at238U and (2) to evaluate the effectiveness of these methodologies on the accuracy of235U/238U atom ratio being determined, particularly when samples containing different U/Pu atom ratios. Isotopic fractionation for both U and Pu in the simultaneous isotopic analysis has been compared with the results of the individual analysis of these elements. The different isotopic fractionation factors observed for U were attributed to different conditions of analysis. There was no significant difference in the isotopic fractionation patterns for Pu. The consideration to extend this method to actual samples from our observations on synthetic samples with diferent U/Pu atom ratios containing U and Pu isotopic reference standards is described.  相似文献   

10.
The isotopic ratios240Pu/239Pu in plutonium samples purified freshly and allowed to stand for a long time were determined by using a high resolution internal conversion electron spectrometer. As a result, it was proved that the above ratios can be determined accurately and precisely. The method was also examined further through a similar determination with curium samples.  相似文献   

11.
Correlations have been established between %Eff 240Pu and various plutonium isotopes formed in thermal reactors. Based on these correlations, a method has been developed for the estimation of isotopic composition of plutonium obtained from thermal reactors. The method is simple, fast, non-destructive and finds application for the verification of plutonium isotopic composition in the finished products of known plutonium content. The method could be applied in the nuclear fuel fabrication to verify and confirm the fissile content (239Pu+241Pu) specification. It has also been shown that in principle, similar correlations could be established for Pu obtained from different thermal reactor fuels with reactor specific fitting parameters.  相似文献   

12.
Summary Studies on the environmental behavior of plutonium in the marine environment require an analytical method with high sensitivity and capability to provide the isotopic composition of Pu in marine samples. In this work, as part of our on-going project on Pu environmental behavior in the Pacific Ocean, a sector field ICP-MS method combined with an off-line anion-exchange chromatography system was optimized for the determination of Pu and its atomic ratio of 240Pu/239Pu in sediment core samples. Using a conical concentric nebulizer and 150-second counting time, we were able to lower the detection limit of Pu down to 0.35 fg. The mass discrimination effect was evaluated using a mixed Pu isotope standard solution with certified a 240Pu/239Pu isotope ratio (NBS-947). The overall performance of the analytical method was validated by the determination of Pu and its isotope composition in an ocean sediment reference material (IAEA-368). Both the 239+240Pu activity and 240Pu/239Pu atomic ratio were found to be in good agreement with the certified and/or literature values. As an important application, we employed the analytical method to investigate the vertical profiles of 239+240Pu activity and 240Pu/239Pu atomic ratio in sediment cores in the Sea of Okhotsk and the NW Pacific. It was found that the Bikini close-in fallout Pu could be transported as far as the Sea of Okhotsk. The results provided evidence to support our hypothesis on the oceanic current transportation of Bikini close-in fallout Pu in the NW Pacific and its marginal seas.  相似文献   

13.
Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, 239Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect qualitative spectra from plutonium and americium, and metal alloy identification was performed on a Pu-contaminated steel sample. Significant alpha decay-induced X-ray fluorescence peaks were observed in spectra obtained from the plutonium and americium samples due to the 235U and 237Np daughters, respectively. The plutonium sample was also analyzed by wavelength dispersive XRF (WDXRF) to demonstrate that alpha decay-induced X-ray emission has a negligible effect on WDXRF spectra.  相似文献   

14.
In nuclear safeguards, precise and accurate isotopic analyses are needed for two major elements from the nuclear fuel cycle: uranium and plutonium. This can be achieved by Isotope Dilution Mass Spectrometry (IDMS), which is one of the most reliable analytical techniques for the determination of plutonium amount content to a high level of accuracy. In order to achieve reliable isotope measurements isotopic reference materials with certified amount of plutonium and isotopic composition are required. At the Institute for Reference Materials and Measurements (IRMM) various plutonium spike reference materials for isotopes 239Pu, 240Pu, 242Pu and 244Pu are available. This enabled the setup of an inter-calibration campaign inter-linking selected plutonium spikes on a metrological basis applying state-of-the-art measurement procedures. The aim of this campaign is threefold: firstly to perform measurements on selected plutonium spike isotopic reference materials for quality control purposes, secondly to verify the amount content and the isotopic composition of the recently produced IRMM-1027m large sized dried (LSD) spikes and thirdly to demonstrate IRMM’s measurement capabilities for plutonium analysis via external quality tools. The obtained results using various spike isotopic reference materials will be presented and discussed in this paper. The measurement uncertainties of the IDMS results were calculated according to the guide to the expression of uncertainty in measurement (GUM).  相似文献   

15.
Summary The recent discovery of the migration of plutonium in groundwater away from underground nuclear tests at the Nevada Test Site has spawned considerable interest in the mechanisms by which plutonium may be released to the environment by a nuclear explosion. A suite of solid debris samples was collected during drilling through an expended test cavity and the overlying collapse chimney. Uranium and plutonium were analyzed for isotope ratios and concentrations using high precision magnetic sector inductively coupled mass spectrometry. The data unequivocally shows that plutonium may be dispersed throughout the cavity and chimney environment at the time of the detonation. The 239Pu/240Pu ratios are also fractionated relative to initial plutonium isotope ratio for the test device. Fractionation is the result of the volatilization of uranium and production of 239Pu by the reaction 238U(n,γ). We conclude that for the test under consideration plutonium was deposited outside of the confines of the cavity by dynamic processes in early-time and it is this plutonium that is most likely transferred to the groundwater regime.  相似文献   

16.
The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP–MS resulted in detection limits as low as 3×10–13 g g–1 for Pu isotopes in soil samples containing uranium at a concentration of a few g g–1. The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA–ICP–MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of -spectrometry, ICP–MS with sample decomposition, and LA–ICP–IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of 239+240Pu (9.8±3.0 mBq g–1) calculated from LA–ICP–IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4±0.2 mBq g–1. However, the precision of LA–ICP–MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA–ICP–MS analysis of environmental samples.Sergei F. Boulyga is on leave from The Radiation Physics and Chemistry Problems Institute, 220109 Sosny, Minsk, Belarus.  相似文献   

17.
Experimental evaluation on the use of239Pu spike in Isotope Dilution-Thermal Ionization Mass Spectrometry (ID-TIMS),238Pu spike in Isotope Dilution Alpha Spectrometry (IDAS) and233U as a Non-Isotopic Diluent in Alpha Spectrometry (N-IDAS), for determing plutonium concentration in samples with burn-up values in the range of 1,000–10,000 MWD/TU is done. Precision is determined by analyzing replicate aliquots from different samples using each of the three spikes. Accuracy is established by comparing the results with those obtained by using well recognized spike242Pu in ID-TIMS. It is shown that the use of239Pu spike with the latest generation thermal ionization mass spectrometers gives the best precision (0.2%), whereas the precision values of 0.5 and 1% can be obtained by using238Pu and233U spikes, respectively, on a routine basis. Reasons for the difference in the precision values are discussed, along with the merits and drawbacks on the use of different spike isotopes.  相似文献   

18.
Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.  相似文献   

19.
A combination alpha and conversion electron spectrometer was developed to quantify 239Pu/240Pu and 238Pu/241Am isotopic ratios of plated sources. The spectrometer was constructed with a commercially available low noise passivated ion-implanted planar silicon (PIPS) detector that was cooled to 77 K with liquid nitrogen. The combination spectrometer was used to quantify alpha-particles, conversion electrons, gamma-rays and X-rays associated with the decay of various plutonium isotopes and 241Am. Two amplifiers operated in parallel with different gains allowed for simultaneous acquisition of the lower energy region (21-60 keV) for internal conversion electrons, gamma-rays and X-rays, and the higher energy region (5050 keV-5550 keV) for alpha-particles. Energy resolutions of 2.2 keV FWHM (full-width at half maximum) for the 38.7 keV M conversion electrons and 11.2 keV for the 5499.2 keV alpha-particles from 238Pu were measured. The energy resolution combined with a spectral deconvolution method was sufficient to be able to quantify the radioactivity using the alpha-spectra as well as the electron spectra; however, quantification of the radioactivity using the internal conversion electron spectra was more problematic because of the presence of X-rays, gamma-rays, Compton scatter electrons and the number of electron peaks present. Deconvolution of the alpha-spectra yielded 239Pu and 240Pu activities (as % of total Pu activity), which differed from expected values by -3.0% to 5.4%. Deconvolution of an internal conversion electron spectrum of a high 239Pu and low 241Am activity sample yielded 239Pu and 240Pu activities, which differed by -17.1 and -35.5% relative to the alpha-measurements, respectively. Determination of the Pu activity using the electron spectra was more problematic in samples where the 241Am activity dominated. Determination of 238Pu and 241Am activity by the electron spectroscopy data was also obtained and compared with the alpha-spectroscopy results. Theoretical investigation of the removal of 241Am or use of a 400 eV electron spectrometer indicated that the internal conversion electron spectra could be used to determine the 238Pu, 239Pu, 240Pu/241Am (when present) activity with and without spectral deconvolution, respectively.  相似文献   

20.
A procedure for the simultaneous determination of241Am and239Pu or238Pu was carried out in samples such as air filters, sweep-tests, aqueous solutions and urine. The method described here includes a previous treatment of the samples in accordance with the type of matrix in which the actinides are included and a liquid scintillation counting using a two-phase cocktail. The upper detection limit was estimated to be 50 mBq for a 50-minute counting time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号