首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Two Schiff base-type chitosan-azacrown ethers were prepared by a reaction of chitosan (CTS) with N-(4′-formylphenyl)aza-crown ethers, and they were converted to secondary-amino derivatives by the reduction of CTS-azacrown ethers with sodium borohydride. Their structures were confirmed by elemental analysis, infrared spectra and thermogravimetric analysis. The ability of these adsorbents to extract Cu(II) and Ni(II) ions from water by a solid-liquid extraction process was studied. The effects of adsorbent amount, contact time and pH on the adsorption of CTS-azacrown ethers were investigated. The extraction results showed that CTS-azacrown ethers had good sorption capacities for Cu(II) ions in the coexistence of Ni(II) ions.  相似文献   

2.
《印度化学会志》2021,98(8):100111
A facile magnetic chitosan composite used for heavy metal ions removal was prepared. The adsorbents with large specific area and rich carboxyl groups exhibited good removal of Cd(II) ions and could be easily separated with magnetic separation. The adsorption capacity of Cd(II) was 48 ​mg ​g−1 and the removal efficiency reached 86.7% after five cycles. Thus, the prepared magnetic chitosan composite could act as a potential adsorbent for Cd(II) ions removal.  相似文献   

3.
We are presenting a strategy for the fabrication of disposable screen-printed electrodes modified with mercury nano-droplets and capable of sensing heavy metal ions. They were prepared by coating electrodes with a mixture of multi-walled carbon nanotubes and chitosan, this followed by adsorption of mercury. The resulting sensor was characterized by cyclic voltammetry and impedance spectroscopy. Also the effects caused by adsorption of mercury were investigated. It is shown that square wave anodic stripping voltammetry enables simultaneous determination of cadmium(II), lead(II) and copper(II), for which detection limits of 12, 23 and 20 nM, respectively, are found. Relative standard deviations for ten determinations at 0.6 µM concentrations of these ions are in the range of 3.0 to 5.7%. The applicability was tested by analyzing river water and showed recoveries between 94.1 and 104.6%, thus demonstrating its utility for in-field monitoring of these heavy metal ions.  相似文献   

4.
The ability of chitosan to form complexes with bivalent metal ions has been broadly explored in the literature. The present work investigates the influence of functionalization of macroporous chitosan membranes with histidine on their ability to remove copper ions from aqueous solution in the range of pH 4–6. The maximum adsorption capacity for Cu(II) ion was 2.5 mmol metal/g pristine chitosan membranes. Under this condition, no influence of membrane porosity was observed. However, for membranes with immobilized histidine, the porosity was shown to be a factor that affects the maximum adsorption capacity, with values ranging from 2.0 to 3.0 mmol metal/g chitosan. These results indicate that the immobilization of histidine on porous chitosan membranes presents synergy with porosity in the ability to complex Cu(II) ions. This synergy may be negative or positive, depending on the initial membrane porosity.  相似文献   

5.
The adsorption of Pb(II) ions from aqueous solutions by chitosan flakes and beads was studied. The chitosan beads were prepared by casting an acidic chitosan solution into alkaline solution. Experiments were carried out as a function of pH, agitation period and initial concentration of Pb2+ ions. The uptake of Pb2+ ions from aqueous solution was determined from changes in concentration as measured by atomic absorption spectroscopy. The maximum uptake of Pb2+ ions on chitosan beads was greater than that on chitosan flakes. Adsorption isothermal data could be interpreted by the Langmuir equation. The experimental data of the adsorption equilibrium from Pb2+ ion solutions correlated well with the Langmuir isotherm equation. SEM analyses were also conducted for visual examination of the chitosan flakes and beads. Physical properties including surface area and average pore diameter were characterized by N2 adsorption experiment.  相似文献   

6.
Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.0 and 3.0, respectively. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir and Freundlich isotherms models. The adsorption kinetics follows the mechanism of the pseudo-second-order equation for all studied systems and this mechanism suggests that the adsorption rate of metal ions by CHS-BPMAMF depends on the number of ions on the adsorbent surface, as well as on their number at equilibrium. The best interpretation for the equilibrium data was given by the Langmuir isotherm and the maximum adsorption capacities were 109 mg g-1 for Cu(II), 38.5 mg g-1 for Cd(II), and 9.6 mg g-1 for Ni(II). The obtained results show that chitosan modified with BPMAMF ligand presented higher adsorption capacity for Cu(II) in all studied pH ranges.  相似文献   

7.
Chitosan‐iron ions complex (CS‐Fe(II,III) complex) was used as precursor to synthesize magnetite nanocrystals and the mechanism was discussed. The magnetite nanocrystals have diameters of about 10 nm and clusters were formed due to slight aggregation of several magnetite nanocrystals. FT‐IR and X‐ray photoelectron spectrometer (XPS) investigations indicated that the Fe(II) and Fe(III) were chelated by ? NH2 and ? OH groups of chitosan in CS‐Fe(II,III) complex, and the molar ratio of ? NH2/Fe(II,III) was approximately 2. This chelation effect destroyed the hydrogen bonds of chitosan. In the following alkali treatment process, the chelated Fe(II) and Fe(III) provided nucleation site and formed the magnetite nanocrystals. After alkali treatment, the chelation effect between iron ions and ? NH2 groups disappeared and some kind of weak interaction formed between magnetite and ? NH2 groups. Moreover, the ? OH groups of chitosan have an interaction with the synthesized magnetite nanocrystals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The present study investigates the utility of composite beads of nano-particles of iron oxide and chitosan for removing Ni (II) ions from aqueous solution by batch and column adsorption techniques. In the batch mode experiment, the influence of pH, concentration, adsorbent dose, temperature, column mode, bed height, flow rate and initial concentration were studied on the adsorption profiles of nickel ions. The maximum uptake of Ni (II) ions was obtained at pH 4.0 in 30 min at room temperature.  相似文献   

9.
A novel chitosan derivative has been synthesized by the condensation of a binucleating ligand, 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formylphenol (BNL), with chitosan (CTS). The resulting material (CTS-BNL) was characterized and its adsorption properties towards copper(II) ions in aqueous solutions of various pH have been studied, the adsorption capacity (Q(e)) is about 0.94 mmol g(-1) at pH 6 and 1.45 mmol g(-1) at pH 8.5. This higher adsorption capacity may be due to the binucleating ligand anchored to chitosan.  相似文献   

10.
Fe(II)-脱乙酰壳聚糖配位聚合物的合成及其性能表征   总被引:12,自引:0,他引:12  
本文探讨了壳聚糖对Fe(Ⅱ)的吸附条件,并对壳聚糖与Fe(Ⅱ)的吸附行为进行了详细研究,认为Fe(Ⅱ)与壳聚糖既发生配位反应形成Fe(Ⅱ)-壳聚糖配位聚合物,也产生吸附作用,并通过红外光谱和紫外光谱证实了Fe(Ⅱ)与壳聚糖之间发生了配位作用。  相似文献   

11.
Thiocarbamoyl chitosan (TCC) was synthesized by grafting thiourea on chitosan backbone in eutectic composition of ammonium thiocyanate—thiourea. Insoluble products with the amno group functionalization degree of 0.3–1.1 can be prepared by varying the conditions of polymer-analogous (synthesis in a gel) transformation. Structure of the synthesized chitosan derivatives was characterized by elemental analysis, diffuse reflectance infrared spectroscopy, and the solid state 13C NMR. Study of sorption properties of TCC shows high sorption capacity and selectivity for the ions of gold(III), platinum(IV), and palladium(II) as evidenced by results obtained at pH 2 in the presence of 100–1000-fold excess of iron(III), copper(II), zinc(II), and nickel(II). Sorption capacity of TCC for all ions increases with the increase in the degree of substitution and changes in the series: AuIII > PdII > PtIV.  相似文献   

12.
The catalysts with copper(II) ions stabilized onto different polymeric matrixes are prepared on either bulk (Cu/chitosan, Cu/polyethyleneimine-polyacrylic acid (PPA), and Cu-diiminate-impregnated polystyrene, polyarylate, or polymethylmethacrylate) or composite supports (egg-shell type Cu/chitosan/SiO2 and Cu/PPA/SiO2). The morphology of the samples and peculiarities of Cu(II) cationic sites are studied by SEM and ESR methods, and the catalyst activities are compared in oxidation of o- and p-dihydroxybenzenes by air in water. The catalytic activity of Cu(II) centers is governed by the coordination of isolated copper ions: for the most active catalysts, i.e., Cu/chitosan and Cu/PPA, the symmetry of isolated Cu2+-sites approximates a coordinatively unsaturated square-planar structure. At the same time, accessibility of active sites to water differs for different polymers, so the contribution of hydrophilicity to the reaction pattern cannot be excluded. Redox transformations of the active sites in the course of catalytic tests do not cause copper leaching from the polymer matrix. The binary composite systems with a film of low-loaded hydrofilic Cu-polymer supported on macroporous SiO2 demonstrate substantially higher activity in oxidation of hydroquinone and 3,4-dihydroxyphenylalanine, as compared with the bulk Cu/polymer samples. In turn, the specific activity of Cu/chitosan/SiO2 exceeds significantly that of Cu/PPA/SiO2 due to stabilization of a thinner and more uniform film of chitosan at the surface of silica.  相似文献   

13.
Various carbon nanomaterials for use in anodic stripping voltammetric analysis of Hg(II), Cu(II), Pb(II) and Cd(II) are screened. Graphene, carbon nanotubes, carbon nanofibers and fullerene (C60), dispersed in chitosan (Chit) aqueous solution, are used to modify a glassy carbon electrode (GCE). The fullerene-chitosan modified GCE (C60-Chit/GCE) displays superior performance in terms of simultaneous determination of the above ions. The electrodes and materials are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The excellent performance of C60-Chit/GCE is attributed to the good electrical conductivity, large surface area, strong adsorption affinity and unique crystalline structure of C60. Using differential pulse anodic stripping voltammetry, the assay has the following features for Hg(II), Cu(II), Pb(II) and Cd(II), respectively: (a) Peak voltages of +0.14, ?0.11, ?0.58 and???0.82 V (vs SCE); (b) linear ranges extending from 0.01–6.0 μM, 0.05–6.0 μM, 0.005–6.0 μM and 0.5–9.0 μM; and (c), detection limits (3σ method) of 3 nM (0.6 ppb), 14 nM (0.9 ppb), 1 nM (0.2 ppb) and 21 nM (2.4 ppb). Moreover, the modified GCE is well reproducible and suitable for long-term usage. The method was successfully applied to the simultaneous determination of these ions in spiked foodstuff.
Graphical abstract Compared with graphene, carbon nanotubes and carbon nanofibers, an electrode modified with fullerene in chitosan electrode displays superior performance for the simultaneous anodic stripping voltammetric detection of Hg(II), Cu(II), Pb(II) and Cd(II).
  相似文献   

14.
Covalent tethering of cysteamine to chitosan using glutaraldehyde yields thiol-functionalized chitosan (CS-SH). It was cast on a glassy carbon electrode which is found to be very stable in acidic solutions and to possess a strong affinity for Hg(II) ions as confirmed by quartz crystal microbalance measurements. A glassy carbon electrode modified with a nanocomposite made from CS-SH and multiwalled carbon nanotubes was applied for square wave voltammetric determination of Hg(II). The procedure comprises the steps of (a) chemical accumulation of Hg(II) under open-circuit condition and (b) electrochemical determination of Hg(II). Linear responses are obtained in the range from 10 to 140 nM, with a limit of detection of 3 nM (S/N?=?3) under optimized conditions. The electrode was applied to the determination of Hg(II) in water samples with satisfactory recoveries.  相似文献   

15.
The influence exerted by the degree of substitution of sulfoethylated chitosan cross-linked with glutaraldehyde on the sorption of Pd(II) chloride complexes from multicomponent solutions containing Pt(IV), Cu(II), Ni(II), Co(II), Cd(II), and Zn(II) was studied. The sorption of transition metal ions under the conditions of the experiment at pH 0.5–5.0 is virtually fully suppressed. The strongest interfering effect on the Pd(II) sorption is exerted by Pt(IV). Calculation of the selectivity coefficients KPd/Pt shows that the selectivity of the Pd(II) sorption relative to Pt(IV) increases with an increase in the degree of substitution of chitosan from 0.3 to 0.5. Integral kinetic curves of the Pd(II) sorption were obtained, and the dependences were subjected to mathematical processing using the models of diffusion and chemical kinetics. The equilibrium in the palladium(II) chloride solution–sorbent system is attained within 40 min. Pd and Pt are quantitatively desorbed from the sorbent surface under dynamic conditions with 3.5 M HCl solution.  相似文献   

16.
The influence of the concentration of a complexing ion on the sorption recovery of nickel, cobalt, mercury, and lead ions from aqueous solutions by a phosphorus-containing polymeric polybutadiene-based sorbent was studied. Sorption isotherms of the studied metal ions were processed by the Langmuir and Freindlich models. The affinity of metal ions to the functional groups of a sorbent and the stability of complexes were established to decrease in the order Hg(II) > Pb(II) > Co(II) > Ni(II).  相似文献   

17.
Recently, one of the most common conditions that manifests as joint and muscle inflammation is rheumatoid arthritis. One of the treatments for this arthritis includes non‐steroidal anti‐inflammatory drugs (NSAIDs) of the oxicam family, and the widest used drug in this family is tenoxicam (Tenox). In this study, the complexation properties of the drug Tenox with Ca(II), Sr(II) and Ba(II) ions in a (dichloromethane + water) binary solvent system are reported. The formed metal complexes were characterized structurally, thermally, and biologically. Tenox was found to act as a chelate monoanionic ligand towards all metal ions with complexation stoichiometry of 1:2 (Metal: Tenox) for Ca(II) and Sr(II) ions, and 1:1 for Ba(II) ions. The Tenox ligand behaves as a bidentate ligand when coordinated with Sr(II) or Ba(II) ions and as a tridentate ligand when coordinated with Ca(II) ions. The Sr(II) and Ba(II) complex of the Tenox ligand exhibited marked inhibitory effect on the cell growth of the C. albicans species.  相似文献   

18.
《先进技术聚合物》2018,29(1):285-293
A novel kind of adsorbent bead was prepared from chitosan (CS) by ionic‐linked with sodium phytate (SP) and then covalent cross‐linked with epichlorohydrin (ECH) by nonsolvent‐induced phase separation. The structure of the beads was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The adsorption properties of the beads for Cu(II) ions under different adsorption conditions were investigated. The maximum adsorption capacity of Cu(II) ions was 177.1 mg g−1 at the conditions of pH of 5.2, temperature of 50°C, and initial Cu(II) ion concentration of 728.3 mg L−1. The adsorption isotherm of Cu(II) ions on the CS/SP/ECH beads was well correlated with the Langmuir isotherm model, and the whole adsorption process could be better followed the pseudo‐second‐order kinetic model. Moreover, the CS/SP/ECH beads still exhibited good adsorption capacity even after the 15th regeneration cycles.  相似文献   

19.
The aim of the present study was to investigate the adsorption properties of aminopropyltriethoxysilane (APS) modified microfibrillated cellulose (MFC) in aqueous solutions containing Ni(II), Cu(II) and Cd(II) ions. The modified adsorbents were characterized using elemental analysis, Fourier transform infrared spectroscopy, SEM and zeta potential analysis. The adsorption and regeneration studies were conducted in batch mode using various different pH values and contact times. The maximum removal capacities of the APS/MFC adsorbent for Ni(II), Cu(II), and Cd(II) ions were 2.734, 3.150 and 4.195 mmol/g, respectively. The Langmuir, Sips and Dubinin-Radushkevich models were representative to simulate adsorption isotherms. The adsorption kinetics of Ni(II) Cu(II), and Cd(II) adsorption by APS/MFC data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that the pseudo-second-order kinetic equation and intra-particle diffusion model were adequate to describe the adsorption kinetics.  相似文献   

20.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号