首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaY zeolite samples loaded with sodium metal by vapor phase deposition have been investigated using129Xe NMR spectroscopy. At low sodium concentration, the129Xe NMR spectrum showed three resonance lines which clearly indicate the existence of distinct domains in the zeolite sample. Such an observation suggests that the diffusion of the xenon atoms into each domain only occurs with respect to the NMR time scale (2.9 ms). As the sodium concentration increases, observation of a single broad line indicate a macroscopic homogenization of the system. The shift of this line is explained in part due to a paramagnetic interaction between the xenon atoms and the unpaired electrons of particles containing an odd number of sodium atoms. The linewidth is due to the distribution of the local magnetic fields partially averaged by the rapid motion of the xenon atoms and to the statistical distribution of the sodium particles in the supercage cavities. The paramagnetic interaction vanishes with the oxidation of the sample leading to a narrowing and a shift of the line to higher magnetic fields.  相似文献   

2.
Little is known about129Xe NMR spectral features and spin-lattice relaxation behavior, and the dynamics of xenon atoms, for xenon adsorbed on solid surfaces at cryogenic temperatures (≤77 K), where exchange with gas-phase atoms is not a significant complication. We report129Xe NMR experiments at 9,4 T that provide such information for xenon adsorbed onto the hydroxylated surface of a number of microporous silica samples at 77 K. A convenient design for these cryogenic experiments is described. Dynamics of surface-adsorbed xenon atoms on the time scale of seconds can be observed by129Xe NMR hole-burning experiments; much slower dynamics occurring over hours and days are evidenced from changes with time of the129Xe NMR chemical shifts. The peak maxima occur in the region ca. 180–316 ppm, considerably downfield of129Xe shifts previously reported on surfaces at higher temperatures, and closer to the shift of xenon bulk solid (316.4±1 ppm). The129Xe spin-lattice relaxation timesT 1 range over five orders of magnitude; possible explanations for both nonexponential relaxation behavior and extremely shortT 1 values (35 ms) are discussed. Preliminary131Xe and1H NMR results are presented, as well as a method for greatly increasing the sensitivity of129Xe NMR detection at low temperatures by using closely-spaced trains of rf pulses.  相似文献   

3.
The adsorption isotherms of carbon monoxide and xenon as well as the129Xe NMR chemical shifts of xenon in highly (68 and 87%) cadmium-exchanged zeolite NaY were measured. The complete set of experimental data can quantitatively be reproduced with a model that considers localized adsorption of both adsorbate molecules on cadmium and sodium cation sites in the supercages. The concentrations of the supercage cadmium cations as well as their characteristics like adsorption constants for Xe and CO and129Xe NMR chemical shifts were determined.  相似文献   

4.
The sensitivity of (129)Xe chemical shifts to weak nonspecific xenon-protein interactions has suggested the use of xenon to probe biomolecular structure and interactions. The realization of this potential necessitates a further understanding of how different macromolecular properties influence the (129)Xe chemical shift in aqueous solution. Toward this goal, we have acquired (129)Xe NMR spectra of xenon dissolved in amino acid, peptide, and protein solutions under both native and denaturing conditions. In general, these cosolutes induce (129)Xe chemical shifts that are downfield relative to the shift in water, as they deshield the xenon nucleus through weak, diffusion-mediated interactions. Correlations between the extent of deshielding and molecular properties including chemical identity, structure, and charge are reported. Xenon deshielding was found to depend linearly on protein size under denaturing solution conditions; the denaturant itself has a characteristic effect on the (129)Xe chemical shift that likely results from a change in the xenon solvation shell structure. In native protein solutions, contributions to the overall (129)Xe chemical shift arise from the presence of weak xenon binding either in cavities or at the protein surface. Potential applications of xenon as a probe of biological systems including the detection of conformational changes and the possible quantification of buried surface area at protein-protein interfaces are discussed.  相似文献   

5.
The adsorption of xenon in siliceous zeolite ZSM-12 has been studied by static, magic angle spinning and 2D-EXSY129Xe NMR. Anisotropic lines were observed with parameters dependent on the Xe loading and the temperature of the experiment. The observed dependence of the isotropic chemical shift is at variance with the predictions of the mean-free-path model, which casts further doubt on the applicability of this model to the interpretation of Xe NMR data in porous systems. Based on the continuous changes of anisotropic parameters with the loading, we conclude that there are several adsorption sites for xenon in the pores. A qualitative model for the distribution and rapid exchange of the xenon atoms between several sites is discussed. The observed lines arise from a dynamic average of the chemical shift tensors for the different types of site weighted by their populations. 2D-EXSY spectra show two kinds of slow exchange of Xe: (a) particle to particle and, (b) particle to interparticle gas phase.  相似文献   

6.
The nuclear polarization of129Xe and3He can be enhanced by several orders of magnitude by using optical pumping techniques, thus allowing NMR detection of xenon and helium in very low concentrations. The benefits of optically enhanced magnetic resonance (MR) are already exploited in MR imaging of the lungs using optically polarized3He. The high solubility of xenon in blood and lipids suggests a variety ofin vivo MR applications, for instance perfusion measurements or functional MR studies. This article reviews some current work directed towards delivery of optically polarized xenon forin vivo MR applications.  相似文献   

7.
We report the experimental results of frequency-selective laser optical pumping and spin exchange of Cs with129Xe and131Xe in a high magnetic field of 11.74 T. Our results show that hyperpolarized129Xe and131Xe nuclear magnetic resonance (NMR) signals exhibit alternating phases when the laser frequency for pumping the cesium atoms is changed, which is explained on the basis of the high-field optical pumping of Cs. We obtain about 3% polarization of the129Xe. The electron-spin polarization of the Cs atoms has been measured to be about 22% with a simple NMR method.  相似文献   

8.
Matthias Koch 《Surface science》2006,600(18):3586-3589
Nuclear magnetic resonance (NMR) is performed on monolayer (ML) amounts of adsorbed 129Xe on a single crystal substrate. The inherently low sensitivity of NMR is overcome by using highly nuclear spin polarized 129Xe that has been produced by optical pumping. A polarization of 0.8 is regularly achieved which is 105 times the thermal (Boltzmann) polarization. The experiments are performed with a constant flux of xenon atoms impinging on the surface, typically 4 ML/s. The chemical shift (σ) of 129Xe is highly sensitive to the Xe local environment. We measured profoundly different shifts for the Xe bulk, for the surface of the Xe bulk, and for Xe on CO/Ir(1 1 1). The growth of the bulk is seen in a phase transition like change of σ as a function of temperature at constant Xe flux. At temperatures where no bulk forms at a flux of 4 ML/s, the xenon exchange rate was measured by a spin inversion/recovery method. The exchange time of Xe is found to be 0.24 s at 63.4 K and 64.4 K and somewhat longer at 61.2 K. An analysis is given involving the desorption out of the second layer and fast mixing of first and second layer atoms at these temperatures.  相似文献   

9.
The temperature dependence of the NMR chemical shift of129Xe dissolved in liquid alkanes is examined in the context of the reaction field model. An essential feature of the theory is the inclusion of the temperature dependence of the density of thesolvent. The theory of free volume for liquids is incorporated into the reaction field model to account for this temperature dependence. Comparison of the theory with previously reported measurements indicates the sensitivity of the129Xe chemical shift to the free volume of liquids. Incorporation of free volume improves the agreement between measurement and theory for branched alkane solvents, and resolves the origin of the 62 ppm intercept in the plot of reaction field as a function of129Xe chemical shift for the n-alkanes.  相似文献   

10.
129 Xe with a nuclear polarization far above the thermal equilibrium value (hyperpolarized) is used in NMR studies to increase sensitivity. Gaseous, adsorbed, or dissolved xenon is utilized in physical, chemical, and medical applications. With the aim in mind to study single-crystal surfaces by NMR of adsorbed hyperpolarized 129Xe, three problems have to be solved. The reliable production of 129Xe with highest nuclear polarization possible, the separation of the xenon gas from the necessary quench gas nitrogen without polarization loss, and the dosing/delivery of small amounts of polarized xenon gas to a sample surface. Here we describe an optical pumping setup that regularly produces xenon gas with a 129Xe nuclear polarization of 0.7(±0.07). We show that a freeze–pump–thaw separation of xenon and nitrogen is feasible without a significant loss in xenon polarization. The nitrogen partial pressure can be suppressed by a factor of 400 in a single separation cycle. Dosing is achieved by using the low vapor pressure of a frozen hyperpolarized xenon sample. Received: 12 June 1998  相似文献   

11.
pacc:6116N,8100Thetasksofnanocarbonmorphologyand porositycharacterizationarealwaysactually.So farthetextureandmicrostructureofcarbonswere examinedonlybysuitableadsorptionmethods,whicharenotalwayseffective.The129XeNMR onadsorbedxenonwasfirstintroducedandde…  相似文献   

12.
A stand-alone, self-contained and transportable system for the polarization of 129Xe by spin exchange optical pumping with Rb is described. This mobile polarizer may be operated in batch or continuous flow modes with medium amounts of hyperpolarized 129Xe for spectroscopic or small animal applications. A key element is an online nuclear magnetic resonance module which facilitates continuous monitoring of polarization generation in the pumping cell as well as the calculation of the absolute 129Xe polarization. The performance of the polarizer with respect to the crucial parameters temperature, xenon and nitrogen partial pressures, and the total gas flow is discussed. In batch mode the highest 129Xe polarization of PXe = 40 % was achieved using 0.1 mbar xenon partial pressure. For a xenon flow of 6.5 and 26 mln/min, P Xe = 25 % and P Xe = 13 % were reached, respectively. The mobile polarizer may be a practical and efficient means to make the applicability of hyperpolarized 129Xe more widespread.  相似文献   

13.
We studied the macroscopic effects of nuclear magnetization. Highly polarized xenon is often used to increase the sensitivity in NMR investigations of porous media, diluted liquids or for imaging in the gas phase. In the condensed phase, however, highly nuclear spin polarized xenon also possesses a sizable magnetization due to the nuclear spin density. This results in an additional magnetic field, that is used to measure the polarization of the sample, when only the particle density is known. Here we find Pz≈0.8 corresponding to a spin temperature of 0.5 mK. We use isotopically enriched xenon with a 129Xe abundance of 0.71. At high abundance of 129Xe and high nuclear polarization the dipolar linewidth is considerably reduced. We find for small angle excitation a reduction from 650 Hz to 400 Hz. We investigate this using a thin film geometry. The susceptibility effects of the substrate and the Xe film are treated. The macroscopic angle between the normal of the film and the external field strongly changes the polarization induced line shift and line width. The first follows an expected cos2θ dependence with an understood amplitude the latter however is not understood up to now. Relaxation of 129Xe in the condensed film is observed to be T1=15±1.8 min, much faster than expected. To cite this article: P. Gerhard et al., C. R. Physique 5 (2004).  相似文献   

14.
The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using 129Xe NMR. For high-pressure (4.0 MPa) 129Xe NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.  相似文献   

15.
The interaction of xenon with different proteins in aqueous solution is investigated by 129Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia “Frontiers of NMR in Molecular Biology VI”, Jan. 9–15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 “Optical Polarization and Xenon NMR of Materials”, June 28–30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

16.
The spin-lattice relaxation time of the129Xe nucleus of natural xenon gas dissolved in various isotropic liquids, acetonitrile, benzene, carbon tetrachloride and cyclohexane, was studied as a function of temperature at the magnetic fields of 9.4 and 4.7 T. The utilization of hydrogenated and deuterated benzene and cyclohexane reveals that the intermolecular129Xe-1H dipole-dipole interaction constitutes an important relaxation mechanism in hydrogenated solvents. According to this interpretation the interaction is rather strongly temperature-dependent, and increases with increasing temperature. An important observation of an experimental nature is also noted, namely convective flow present in non-spinning sample tubes at elevated temperatures disturbs inversion-recovery measurements and leads to erroneous and unreliable relaxation time values.  相似文献   

17.
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.  相似文献   

18.
The interaction of xenon with different proteins in aqueous solution is investigated by (129)Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia "Frontiers of NMR in Molecular Biology VI", Jan. 9--15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 "Optical Polarization and Xenon NMR of Materials", June 28--30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

19.
Nuclear-magnetic-resonance (NMR) measurement of laser-polarized gaseous129Xe produced by spin-exchange optical pumping with a narrow-linewidth laser at a high magnetic field of 4.7 T is reported. The samples are contained in the glass tubes. The nuclear spin polarization of the laserpolarized129Xe is 3.9%, and this corresponds to an enhancement of 9· 103 compared to the equilibrium value at 311 K and at the same magnetic field. The laser-enhanced129Xe NMR signals can be used in MR imaging.  相似文献   

20.
Introduction  Bythemethodoflaseropticalpumpingspin exchange ,theNMRsignalfrom 1 2 9Xegascanbegreatlyenhanced[1 ] .Theobservedratioofsignaltonoiseisbetterthan 10 0 .Theamplificationfactorofthenuclearspinpolarizationoflaser polarized 1 2 9Xeis 10 4bycomparisonwiththeB…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号