首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Uniformly (15)N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of (1)H-(15)N dipolar coupling and (15)N chemical shift frequencies. However, resolution is greatly improved in three-dimensional (1)H chemical shift/(1)H-(15)N dipolar coupling/(15)N chemical shift correlation spectra. The 23-residue antibiotic peptide magainin and a 54-residue polypeptide corresponding to the cytoplasmic domain of the HIV-1 accessory protein Vpu are used as examples. Both polypeptides consist almost entirely of alpha-helices, with their axes aligned parallel to the membrane surface. The measurement of three orientationally dependent frequencies for Val17 of magainin enabled the three-dimensional orientation of this helical peptide to be determined in the lipid bilayer.  相似文献   

2.
Two-dimensional 1H/13C polarization inversion spin exchange at the magic angle experiments were applied to single crystal samples of amino acids to demonstrate their potential utility on oriented samples of peptides and proteins. High resolution is achieved and structural information obtained on backbone and side chain sites from these spectra. A triple-resonance experiment that correlates the 1H-13Calpha dipolar coupling frequency with the chemical shift frequencies of the alpha-carbon, as well as the directly bonded amide 15N site, is also demonstrated. In this experiment the large 1H-13Calpha heteronuclear dipolar interaction provides an independent frequency dimension that significantly improves the resolution among overlapping 13C resonances of oriented polypeptides, while simultaneously providing measurements of the 13Calpha chemical shift, 1H-13C dipolar coupling, and 15N chemical shift frequencies and angular restraints for backbone structure determination.  相似文献   

3.
Two-dimensional 1H/13C polarization inversion spin exchange at the magic angle experiments were applied to single crystal samples of amino acids to demonstrate their potential utility on oriented samples of peptides and proteins. High resolution is achieved and structural information obtained on backbone and side chain sites from these spectra. A triple-resonance experiment that correlates the 1H–13Cα dipolar coupling frequency with the chemical shift frequencies of the α-carbon, as well as the directly bonded amide 15N site, is also demonstrated. In this experiment the large 1H–13Cα heteronuclear dipolar interaction provides an independent frequency dimension that significantly improves the resolution among overlapping 13C resonances of oriented polypeptides, while simultaneously providing measurements of the 13Cα chemical shift, 1H–13C dipolar coupling, and 15N chemical shift frequencies and angular restraints for backbone structure determination.  相似文献   

4.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee–Goldburg irradiation for both 13C homonuclear decoupling and 1H–15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H–15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

5.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both 13C homonuclear decoupling and 1H-15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H-15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

6.
We present a simple method for extracting interference effects between chemical shift anisotropy (CSA) and dipolar coupling from spin relaxation measurements in macromolecules, and we apply this method to extracting cross-correlation rates involving interference of amide15N CSA and15N–1H dipolar coupling and interference of carbonyl13C′ CSA and15N–13C′ dipolar coupling, in a small protein. A theoretical basis for the interpretation of these rates is presented. While it proves difficult to quantitatively separate the structural and dynamic contributions to these cross-correlation rates in the presence of anisotropic overall tumbling and a nonaxially symmetric chemical shift tensor, some useful qualitative correlations of data with protein structure can be seen when simplifying assumptions are made.  相似文献   

7.
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine.  相似文献   

8.
The solid-state1H MAS (magic-angle spinning),2H static,15N CP (cross polarization)-MAS and15N-1H dipolar CSA (chemical shielding anisotropy) NMR (nuclear magnetic resonance) spectra of two different modifications of Cα-deuteratedl5N-polyglycine, namely PG I and PG II (-CO-CD2-l5NH-)n are measured. The data from these spectra are compared to previous NMR, infrared, Raman and inelastic neutron scattering work. The deuteration of Cα eliminates the largest intramolecular1H-1H dipolar coupling. The effect of the remaining (N)H-(N)H interaction (~5 kHz) is not negligible compared to the15N-1H coupling (about 10 kHz). Its effect on the dipolar CSA spectra, described as a two-spin system, is analyzed analytically and numerically and it is shown that those parts of the powder spectrum, which correspond to orientations with a strong dipolar15N-1H interaction, can be described as an effective two-spin system, permitting the measurement of the strength of the15N-1H dipolar interaction and the orientation of the dipolar vector with respect to the15N CSA frame. While in the PG II system the15N CSA tensor is collinear with the amide plane, in the PG I system the CSA tensor is tilted ca. 16° with respect to the (δ11δ22) CSA plane.  相似文献   

9.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

10.
Four new and complementary three-dimensional triple-resonance experiments are described for obtaining complete backbone 1H, 13C, and 15N resonance assignments of proteins uniformly enriched with 13C and 15N. The new methods all rely on 1H detection and use multiple magnetization transfers through well-resolved one-bond J couplings. Therefore, the 3D experiments are sensitive and permit relatively rapid recording of 3D spectra (l–2 days) for protein concentrations on the order of 1 mM. One experiment (HNCO) correlates the amide 1H and 15N shifts with the 13C shift of the carbonyl resonance of the preceding amino acid. A second experiment (HNCA) correlates the intraresidue amide 1H and 15N shifts with the Cα chemical shift. This experiment often also provides a weak correlation between the amide NH and 15N resonances of one amino acid and the Ca resonance of the preceding amino acid. A third experiment (HCACO) correlates the Hα and Cα shifts with the intraresidue carbonyl shift. Finally, a 3D relay experiment, HCA(CO)N, correlates Ha and Cal resonances of one residue with the 15N frequency of the succeeding residue. The principles of these experiments are described in terms of the operator formalism. To optimize spectral resolution, special attention is paid to removal of undesired J splittings in the 3D spectra. Technical details regarding the implementation of these triple-resonance experiments on a commercial spectrometer are also provided. The experiments are demonstrated for the protein calmodulin (16.7 kDa).  相似文献   

11.
A method for enhancing the sensitivity of 15N spectra of nonspinning solids through 1H indirect detection is introduced. By sampling the 1H signals in the windows of a pulsed spin-lock sequence, high-sensitivity 1H spectra can be obtained in two-dimensional (2D) spectra whose indirect dimension yields the 15N chemical shift pattern. By sacrificing the 1H chemical shift information, sensitivity gains of 1.8 to 2.5 for the 15N spectra were achieved experimentally. A similar sensitivity enhancement was also obtained for 2D (15)N-(1)H dipolar and 15N chemical shift correlation spectroscopy, by means of a 3D 1H/15N-1H/15N correlation experiment. We demonstrate this technique, termed PRINS for proton indirectly detected nitrogen static NMR, on a crystalline model compound with long 1H T(1rho) and on a 25-kDa protein with short 1H T(1rho). This 1H indirect detection approach should be useful for enhancing the sensitivity of 15N NMR of oriented membrane peptides. It can also be used to facilitate the empirical optimization of 15N-detected experiments where the inherent sensitivity of the sample is low.  相似文献   

12.
The secondary structure and topology of membrane proteins can be described by inspection of two-dimensional (1)H-(15)N dipolar coupling/(15)N chemical shift polarization inversion spin exchange at the magic angle spectra obtained from uniformly (15)N-labeled samples in oriented bilayers. The characteristic wheel-like patterns of resonances observed in these spectra reflect helical wheel projections of residues in both transmembrane and in-plane helices and hence provide direct indices of the secondary structure and topology of membrane proteins in phospholipid bilayers. We refer to these patterns as PISA (polarity index slant angle) wheels. The transmembrane helix of the M2 peptide corresponding to the pore-lining segment of the acetylcholine receptor and the membrane surface helix of the antibiotic peptide magainin are used as examples.  相似文献   

13.
Matrine and oxymatrine were extracted fromSophora flavescens, and their1H and13C nuclear magnetic resonances (NMR) were unambiguously assigned by a combination of different two-dimensional 2-D1H-13C and1H-1H correlation experiments of HMQC, HMQC-TOCSY and MAXY. The technique of using those experiments to make the assignment of the heavily overlapped spectrum is demonstrated. The coupling constants of matrine were measured by 2-DJ-resolved spectrum and 1-D spectra extracted from the slices of 2-D MAXY spectrum. The stereochemistry of the titled compounds was established from the NMR spectroscopy.  相似文献   

14.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of (13)C CSA and (13)C-(1)H dipolar coupling in a disaccharide, alpha,alpha-D-trehalose, at natural abundance of (13)C as well as interference of amide (15)N CSA and (15)N-(1)H dipolar coupling in uniformly (15)N-labeled ubiquitin. We demonstrate that the standard heteronuclear T(1), T(2), and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

15.
Initial steps in the development of a suite of triple-resonance (1)H/(13)C/(15)N solid-state NMR experiments applicable to aligned samples of (13)C and (15)N labeled proteins are described. The experiments take advantage of the opportunities for (13)C detection without the need for homonuclear (13)C/(13)C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are approximately 20% randomly labeled with (13)C in all backbone and side chain carbon sites and approximately 100% uniformly (15)N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are (13)C labeled at only the alpha-carbon and (15)N labeled at the amide nitrogen of a few residues. The requirement for homonuclear (13)C/(13)C decoupling while detecting (13)C signals is avoided in the first case because of the low probability of any two (13)C nuclei being bonded to each other; in the second case, the labeled (13)C(alpha) sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the (13)C chemical shift and (1)H-(13)C and (15)N-(13)C heteronuclear dipolar coupling frequencies associated with the (13)C(alpha) and (13)C' backbone sites, which provide orientation constraints complementary to those derived from the (15)N labeled amide backbone sites. (13)C/(13)C spin-exchange experiments identify proximate carbon sites. The ability to measure (13)C-(15)N dipolar coupling frequencies and correlate (13)C and (15)N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the (13)C chemical shift and (1)H-(13)C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach.  相似文献   

16.
For compounds giving “crowded” 1-dimensional magic-angle-spinning spectra, information about the local atomic environment in the form of the chemical shift anisotropy (CSA) is sacrificed for high resolution of the less informative isotropic chemical shift. Magic-angle-turning (MAT) NMR pulse sequences preserve the CSA information by correlating it to the isotropic chemical shift in a 2-dimensional experiment. For low natural abundance nuclei such as 13C and 15N and under 1H heteronuclear dipolar decoupling conditions, the dominant NMR interaction is the chemical shift. For abundant nuclei such as 1H, 19F, and 31P, the homonuclear dipolar interaction becomes a significant contribution to the observed linewidth in both F1 and F2 dimensions. We incorporate MREV8 homonuclear multiple-pulse decoupling sequences into the MAT experiment to give a multiple-pulse MAT (MP-MAT) experiment in which the homonuclear dipolar interaction is suppressed while maintaining the chemical shift information. Extensive use of computer simulation using GAMMA has guided the pulse sequence development. In particular, we show how the MREV8 pulses can be incorporated into a quadrature-detected sequence such as MAT. The MP-MAT technique is demonstrated for a model two-site system containing a mixture of silver trifluoroacetate and calcium difluoride. The resolution in the isotropic evolution dimension is improved by faster sample spinning, shorter MREV8 cycle times in the evolution dimension, and modifications of the MAT component of the pulse sequence.  相似文献   

17.
Cation binding to the monovalent cation selective channel, gramicidin A, is shown to induce changes in the dipolar and chemical shift observables from uniformly aligned samples. While these changes could be the result of structural or dynamic changes, they are shown to be primarily induced by through-bond polarizability effects when cations are solvated by the carbonyl oxygens of the peptide backbone. Upon cation binding partial charges are changed throughout the peptide plane, inducing large changes in the13C1chemical shifts, smaller changes in the15N chemical shifts, and even smaller effects for the15N–13C1and15N–2H dipolar interactions. These conclusions are substantiated by characterizing the15N chemical shift tensors in the presence and absence of cations in fast-frozen lipid bilayer preparations of gramicidin A.  相似文献   

18.
We have developed a set of orientational restraint potentials for solid-state NMR observables including (15)N chemical shift and (15)N-(1)H dipolar coupling. Torsion angle molecular dynamics simulations with available experimental (15)N chemical shift and (15)N-(1)H dipolar coupling as target values have been performed to determine orientational information of four membrane proteins and to model the structures of some of these systems in oligomer states. The results suggest that incorporation of the orientational restraint potentials into molecular dynamics provides an efficient means to the determination of structures that optimally satisfy the experimental observables without an extensive geometrical search.  相似文献   

19.
Several new techniques, requiring 15N incorporation, are described for measuring NHCαH J couplings in proteins. 1H-detected heteronuclear 1H15N multiple-quantum correlation spectra retain the homonuclear J coupling information. Because of the favorable relaxation properties of 15N1H zero- and double-quantum coherences, significant line narrowing occurs in the F1, dimension compared to the regular NH 1H linewidth, permitting high accuracy measurements of J splittings, even for medium sized proteins. Methods for convenient analysis of such coupling information are described, correcting for linewidth and dispersion mode contributions. The new approach is demonstrated for the protein staphylococcal nuclease (18 kDa), complexed with pdTp and calcium.  相似文献   

20.
A novel method for suppression of diagonal peaks in the amide region of NOESY NMR spectra of 15N-labeled proteins is presented. The method is particularly useful for larger proteins at high magnetic fields where interference between dipolar and chemical shift anisotropy relaxation mechanisms results in large TROSY effects, i.e., large differences in 1HN linewidths depending on the spin state of attached 15N nuclei. In this limit the new TROSY NOESY method does not compromise sensitivity. It is demonstrated using a perdeuterated 15N-labeled protein sample, Neural Cell Adhesion Molecule 213–308 (NCAM) from rat, in H2O at 800 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号