首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
苝四甲酸二酐的真空升华提纯及其光谱测试与分析   总被引:1,自引:0,他引:1  
纯度为9.75%的有机半导体材料苝四甲酸二酐(PTCDA),在其升华点进行了真空升华提纯,其纯度可达99.9%。利用质谱、红外光谱及X光电子能谱对这种高纯材料进行了测试并详细分析了其分子结构、化学键的形成、原子在晶格平衡位置的振动模式、电子的组态和原子的结合能的变化。由红外光谱分析得出,苝四甲酸二酐的分子结构是中央5个C构所组成的苝核基团及位于苝核两端的两个酸酐组成,它们主要以共价键结合。晶格上的C原子在其平衡位置主要以伸缩振动为主。其分子中有大量可以自由移动的π电子;分子间离域大π键的交叠决定了苝四甲酸二酐的导电性能。由XPS谱分析得出,高纯度的苝四甲酸二酐中有结合能不同的两种C原子,结合能分别为:285.3和288.7 eV。它们对应于苝环及酸酐上的C原子。另外,有两种类型的O原子,即CO和C—O—C,其结合能分别为531.3和533.1 eV。  相似文献   

2.
Contact formation dynamics and electronic perturbations arising from the interaction of a metallic probe and a single molecule (1,3 cyclohexadiene) bound on the Si (100) surface are examined using a series of plane wave, density functional theory calculations. The approach of the probe induces a relaxation of the molecule that ultimately leads to the formation of an interface state due to a specific interaction between the probe apex atom and the C=C bond of the molecule. The calculated interface state is located 0.2 eV above the Fermi energy, in agreement with low temperature scanning tunneling spectroscopy local density of states data (0.35 eV), and is responsible for the contrast observed in low bias empty-state STM images.  相似文献   

3.
《Surface science》1995,327(3):L511-L514
This Letter describes a novel method of employing the phenomenon of oxygen chemisorption for atom discrimination in the SiGe surface termination layer. Formation of SiO species on clean Si(100) gives rise to peaks at 7 and 10.2 eV in He I UPS and a peak at 532.3 eV in O 1s XPS. Whereas GeO species on a Ge(100) surface exhibits a single peak at 5.2 eV in He I UPS and a peak at 531.3 eV in O 1s XPS. These signature spectra of SiO and GeO species have been effectively employed for atom discrimination in the termination layer of SiGe surfaces. Upon dosing at room temperature, on a sample prepared by depositing 5ÅGe on Si(100) at 550°C, oxygen bonds with Ge atoms forming GeO, exclusively. This indicates termination entirely by Ge atoms. Oxygen adsorption at room temperature, on a sample prepared by codeposition of Ge and Si (total 5Å) onto Si(100) at 550°C, forms a mixture of SiO and GeO species suggesting a surface termination by both Ge and Si atoms.  相似文献   

4.
Hydrogen cyanide (HCN) is an important intermediate during the conversion of fuel nitrogen to NOx. The mechanism of HCN oxidation to NO, N2, and N2O on the CaO (100) surface model was investigated using density functional theory calculations to elucidate the effect of in-furnace SOx removal on HCN oxidation in circulating fluidized bed boilers. HCN adsorption on the CaO (100) surface releases as high as 1.396 eV and the HC bond is strongly activated. The CaO (100) surface could catalyze the oxidation of CN radical to NCO with the energy barrier decreasing from 1.560 eV for the homogeneous case to 0.766 eV on the CaO (100) surface. The succeeding oxidation of NCO by O2 forming NO is catalyzed by the CaO (100) surface with the energy barrier decreasing from 0.349 eV (homogeneous process) to 0.026 eV on the CaO (100) surface, while the reaction between NCO and NO forming either NO or N2 is prohibited in comparison with corresponding homogeneous routes. The rate constants of these reactions under fluidized bed combustion temperature range are provided, and the calculation results lead to the conclusion that CaO (100) surface catalyzes the HCN conversion and improves the NO selectivity during HCN oxidation in the HCN/O2/NO atmosphere, which could well explain previous experimental observations. Kinetic parameters of HCN oxidation on the CaO (100) surface are provided in the Arrhenius form for future kinetic model development.  相似文献   

5.
高温硫化硅橡胶具有优良的电气性能、机械性能、憎水性而广泛应用于特高压输电线路,但亦会受外界环境的影响而老化,其抗紫外老化性能受到关注.课题组模拟户外紫外辐射环境,设计搭建了可调式紫外辐射加速老化试验箱,对A、B两个厂家的高温硫化硅橡胶样品进行了紫外辐射(0,500和1000 h)加速老化实验,重点对辐射前后的试样进行X...  相似文献   

6.
Silicon carbide (SiC) films are prepared by single- and dual-ion beam sputtering deposition at room temperature, respectively. An assisting argon ion beam (ion energy Ei=150 eV) bombards directly the substrate surface to modify the SiC film surface. The thin films are characterized by the Fourier transform infrared spectroscopy (FTIR) and the Raman spectra. With assisting ion beam bombardment, the density of the Si–C bond in the film increases. Meanwhile, the excess carbon or the size of the sp2 bonded clusters and the amorphous Si (a-Si) phase decrease. These results indicate that the composition of the films is mainly Si–C bond. UV-vis transmission shows that the Eopt increases steadily from 1.85 eV for the amorphous SiC (a-SiC) films without bombardment to about 2.29 eV for those with assisting ion beam bombardment.  相似文献   

7.
The role of mobile interstitial oxygen atoms (O(0)) in defect processes in oxides is demonstrated by interconversion between the oxygen dangling bond and the peroxy radical (POR) in SiO2 glass. Superstoichiometric O(0) was created by F2 laser photolysis of the interstitial O2. On annealing above 300 degrees C, O(0) migrated and converted the oxygen dangling bond to POR. Exposure to 5.0 eV light converted POR back to a pair of the oxygen dangling bond and O(0) (quantum yield: approximately 0.1). These findings suggest that various defect processes typically occurring in SiO2 glass at approximately 300-500 degrees C are related to migration of O(0), which exists in the glass network in the peroxy linkage form.  相似文献   

8.
在热镀锌钢板表面制备了硅烷钒锆复合钝化膜。用X射线光电子能谱(XPS)、射频辉光放电发射光谱(rf-GD-OES)和傅里叶变换衰减全反射红外光谱(ATR-FTIR)表征了钝化膜的组成结构,分析了硅烷钒锆复合钝化膜的成膜机理。结果表明:硅烷之间互联构成了硅烷钒锆复合钝化膜的主成膜成分,无机缓蚀剂均匀分布在膜层中。钝化膜表面Si2p的XPS窄幅扫描谱100.7 eV处的拟合峰和红外光谱在波数1 100 cm-1 Si—O吸收峰变宽加强,表明硅烷以Si—O—Zn键的形式化学吸附在锌的表面,硅烷分子之间通过Si—O—Si键相互交联;红外光谱中1 650和1 560 cm-1的两个酰胺特征峰,结合910 cm-1的环氧特征峰的消失,表明γ-GPT的环氧基团在氨基活性氢的诱导下开环和γ-APT的氨基之间发生聚合反应形成交联的空间网状结构;rf-GD-OES分析发现钝化膜0.3 μm处存在一层富氧层,钝化反应生成的ZrF4,ZrO2和钒盐等无机物均匀分布在钝化膜中。分析膜层组成结构和成膜前后的ATR-FTIR光谱,研究了成膜过程中发生的物理过程和化学变化,提出了硅烷钒锆复合钝化膜的成膜机理。  相似文献   

9.
Liao MS  Huang MJ  Watts JD 《Molecular physics》2011,109(16):2035-2048
Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (E(bond)) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O(2)). The results indicate that an accurate prediction of E(bond) for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield E(bond) values of ca.1.1, 1.2, and 0.4 eV for AB = CO, NO, and O(2), respectively, which are in reasonable agreement with experimental data (0.78 - 0.85 eV for CO, 0.99 eV for NO, and 0.44 - 0.53 eV for O(2)). The other functionals show more or less deficiency for one or two of the systems. The performances of the various functionals in describing the spin-state energetics of the five-coordinate FeP(Im) complex were also examined.  相似文献   

10.
Acetonitrile (CH3CN) coordination to a Pt(111) surface has been studied with electron energy loss vibrational spectroscopy (EELS), XPS, thermal desorption and work function measurements. We compare data for the surface states with known acetonitrile coordination complexes. For CH3CN adsorbed on Pt(111) at 100 K, the molecule is rehybridized and adsorbs with the CN bond parallel or slightly inclined to the surface plane in an η2(C, N) configuration. The ν(CN) frequency is 1615 cm?1 and the C ls and N ls binding energies are 284.6 eV and 397.2 eV respectively. By contrast, weakly adsorbed multilayer acetonitrile exhibits a ν(CN) vibrational frequency of 2270 cm?1, and C ls and N ls binding energies of 286.9 eV and 400.1 eV respectively. Both the EELS and XPS results are consistent with rehybridization of the CN triple bond to a double bond with both C and N atoms of the CN group attached to the surface. In addition to this majority η2(C, N) monolayer state, evidence is found for a second, more strongly bound minority molecular state in thermal desorption spectra. As a result of the low coverage of this state, EELS was unable to spectroscopically identify it and we tentatively assign it as an η4(C, N) species associated with accidental step sites. By contrast to the surface complexes, almost all of the known platinum-nitrile coordination complexes are end-bonded via the N lone-pair orbital. Several cases of side-on bonding are known, however, and we compare the results with the known complex Fe32-NCCH3)(CO)9. The difference in the coordinative properties of a Pt(111) surface versus a single Pt atom must be due to the increased ability of multi-atom arrays to back-donate electrons into the π1 system of acetonitrile. Previously published EELS and XPS results for monolayer acetonitrile on Ni(111) and polycrystalline films are almost identical to the present results on Pt(111). We believe that the monolayer of CH3CNNi(111) is also an η2(C, N) species, not an end-bonded species previously proposed by Friend, Muetterties and Gland.  相似文献   

11.
We present first-principle calculations of 2D nanostructures of graphene functionalized with hydrogen and fluorine, respectively, in chair conformation. The partial density of states, band structure, binding energy and transverse displacement of C atoms due to functionalization (buckling) have been calculated within the framework of density functional theory as implemented in the SIESTA code. The variation in band gap and binding energy per add atom have been plotted against the number of add atoms, as the number of add atoms are incremented one by one. In all, 37 nanostructures with 18C atoms, 3 × 3 × 1 (i.e., the unit cell is repeated three times along x-axis and three times along y-axis) supercell, have been studied. The variation in C–C, C–H and C–F bond lengths and transverse displacement of C atoms (due to increase in add atoms) have been tabulated. A large amount of buckling is observed in the carbon lattice, 0.0053–0.7487 Å, due to hydrogenation and 0.0002–0.5379 Å, due to fluorination. As the number of add atoms (hydrogen or fluorine) is increased, a variation in the band gap is observed around the Fermi energy, resulting in change in behaviour of nanostructure from conductor to semiconductor/insulator. The binding energy per add atom increases with the increase in the number of add atoms. The nanostructures with 18C+18H and 18C+18F have maximum band gap of 4.98 eV and 3.64 eV, respectively, and binding energy per add atom –3.7562 eV and –3.3507 eV, respectively. Thus, these nanostructures are stable and are wide band-gap semiconductors, whereas the nanostructures with 18C+2H, 18C+4H, 18C+4F, 18C+8F, 18C+10F and 18C+10H atoms are small band-gap semiconductors with the band gap lying between 0.14 eV and 1.72 eV. Fluorine being more electronegative than hydrogen, the impact of electronegativity on band gap, binding energy and bond length is visible. It is also clear that it is possible to tune the electronic properties of functionalized graphene, which makes it a suitable material in microelectronics.  相似文献   

12.
The conformational energies of isotactic and syndiotactic poly (methacrytic acid) were calculated for isolated chains in order to determine the most probable helical conformations. It was concluded that the most probable backbone conformation of the isotactic polymer is either a 52 or 83 helix, where the internal rotations of the two helices are nearly equal. The left-handed and right-handed conformations were also essentially equienergy conformations. Two lowenergy helical conformations were found for the syndiotactic polymer. One of these conformations had backbone internal rotations nearly identical to those of the 52 and 83 helices of isotactic poly(methacry1ic acid). The second conformation was a nearly planar structure containing two monomer units in the axial repeat unit, with backbone rotation angles nearly identical to those of the 52 and 83 helices or their negatives.

Deformation of the backbone C─C─C bond angles was considered in the conformational energy calculations. The optimum bond angles for both isotactic and syndiotactic polymer chains were considerably larger than the normal tetrahedral bond angle. The relative energies calculated for helical conformations were influenced by the backbone bond angles. It was demonstrated that the failure to consider backbone bond-angle deformation may lead to erroneous conformational assignments in disubstituted vinyl polymers.  相似文献   

13.
Photoelectron spectra of Cu(110) after exposure to thiacyclobutane, thiacyclopentane, and thiacyclohexane, as well as of the clean Cu(110) surface, have been obtained using He(I) radiation. Comparison of the spectra of the absorbates with gas-phase spectra suggests a strong sulfur-to-copper dative bond. Sulfur lone-pair orbital stabilization energies were obtained for thiacyclobutane (1.4 eV), thiacyclopentane (1.1 eV), and thiacyclohexane (0.6 eV), and these stabilization energies are correlated with the dative sulfur-to-surface bond energies. Ring-strain changes are suggested as the reason for additional small shifts of absorbate-bond energies in the thiacyclobutane spectrum. Relaxation energies were found to decrease in the order 4- > 5- > 6-membered ring. An empirical linear relation was found between relaxation shifts and lone-pair orbital stabilization energies for monoheteroatom heterocycles bonded to Cu(110) by a lone-pair dative bond. All adsorbates studied showed marked angular dependence, suggesting nonrandom orientation on the surface. Al Kα X-ray data were used to calculate percentage surface coverages. Other sulfur-containing adsorbates are discussed, including thiophene, allyl mercaptan, and thiacyclopropane. Thiacyclopropane was found to decompose upon exposure to copper.  相似文献   

14.
The electronic structure and the nature of optical transitions in oxygen dangling bond in silica glass, the nonbridging oxygen hole center (NBOHC), were calculated. The calculation reproduced well the peak positions and oscillator strengths of the well-known optical absorption bands at 2.0 and 4.8 eV, and of the recently discovered absorption band at 6.8 eV. The 2.0 eV band was attributed to transition from the sigma bond between Si and dangling oxygen to nonbonding pi orbital on the dangling oxygen. The uniquely small electron-phonon coupling associated with the 2.0 eV transition is explained by stabilization of Si-O bond in the excited state by hyperconjugation effects.  相似文献   

15.
茶树叶与根表面的XPS表征   总被引:3,自引:0,他引:3  
利用X射线光电子能谱(XPS)研究了茶树叶与根的表面化学组成与结构。结果表明,茶树表面主要由C, O, N和Al等四种元素组成,在茶树叶远轴面还有少量的P和F。通过查阅标准图谱数据库、参照木材表面XPS分析结果,对茶树表面测得的C1s结合能采用曲线拟合与分峰,得到三种形态:结合能为285 eV的是C1,来自C—C或C—H,代表角质、蜡质等脂类化合物;C2的结合能在286.35 eV(近轴面)和286.61 eV(远轴面),是能够与氧形成单键的C—O,主要源于表面的纤维素;C3的结合能为288.04 eV(近轴面)和288.09 eV(远轴面),为CO基团标志,综合N(1s)的结合能(399~401 eV)和O(1s)的分峰情况,为蛋白质的酰基标志。茶树根表面除含有与叶表面相同的C1(结合能285 eV)、C2(结合能286.49 eV)和C3(结合能288.78 eV)所代表的角质、蜡质、纤维素和蛋白质之外,还出现了结合能为283.32 eV的C5。由于其结合能低于C1,推测为茶树根表面的有机金属形态。茶树叶和根表面没有木材表面具有的羧基C4,说明根系分泌的有机酸游离存在于根表面。对茶树表面O(1s)图谱的拟合结果与C(1s)结果相吻合。计算不同C和O形态所占的比例得知,茶树叶面远轴面含氧基团多于近轴面,呈较高的氧化状态,因此远轴面化学性质较活泼;与叶相比,茶树根的角质和蜡质含量显著降低,含氧基团相对增多,因此化学性质较活泼,适于水分子和其他溶质分子通过。由于蛋白质含量为根表面>远轴面>近轴面,表明根表面的湿润度高于叶表面,而远轴面湿润度高于近轴面。存在于茶树表面Al的结合能均大于单质铝72.7 eV,在73.50 eV以上,为Al2O3形态,这将增大茶树表面的吸附作用。由于根表面Al2O3含量高于叶面,显示根具有更强的吸附能力。  相似文献   

16.
"使用Brenner-LJ拟合势描述了金刚石与C36团簇原子间的相互作用,并用分子动力学模拟的方法研究单个C36(D6h)在金刚石(100)晶面的沉积机制.通过仿真实验分析了C36团簇的入射能量、入射点位置、入射姿势、入射角度等因素对其成核初期化学吸附过程以及沉积后其稳定性的影响.研究发现:由于C36入射点位置及入射姿势的不同,其在金刚石(100)晶面沉积时的沉积阈值最小值为20 eV,最大值为60 eV;在入射角不超过60o斜射时,由于水平运动分量的存在,C36可能翻滚及平滑至成键能量较小的区域后再成键  相似文献   

17.
The formation of Ag2, Au2 and AgAu particles oriented perpendicularly to the MgO(1 0 0) surface was studied using the density functional theory. While the support induces a slight enhancement of the Ag-Ag bond (by 0.3-0.4 eV), the Au-Au bond is strongly enhanced (by 0.8-1.1 eV). Concerning the bimetallic particle, the Ag-Au bond stabilization depends on the relative position of each atom. Thus, in general terms, the strength of the metal-metal bond is determined by the nature of the terminal atom; the bond is stronger in Au-terminal particles. The partial electronic charge transfer to the terminal Au atom and its ability to polarize this charge are responsible for this energetic stabilization.  相似文献   

18.
《Surface science》1987,181(3):586-595
Vapor deposited NaCl on the Ni(111) surface was characterized by XPS. Three types of NaCl were found on the surface. First, the NaCl interacted strongly with Ni giving the Nals peak at 1072.2 eV, the C12p peak at 198.8 eV and the NaKLL peak at 494.3 eV. The 494.3 eV peak shifted to 493.4 eV when measured at ∼ 500 K. The energy of the NaKLL peak and the modified Auger parameter for sodium were nearer to those for Na metal than to those for bulk NaCl. The species was assigned to NaCl which was freed from the potential of the NaCl crystal and which had a weakened NaCl bond. The other types were characterized by using H2O as a probe. One set of the peaks, the Nals peak at 1072.8 eV, the C12p peak at 199.6 eV and the NaKLL peak at 497.7 eV, was assigned to NaCl which was in the form of a very thin crystal. The other set, the Nals peak at 1073.5 eV, the C12p peak at 200.1 eV and the NaKLL peak at 498.5 eV, was obtained during crystal growth of NaCl as large islands upon annealing. The energies suffered from the charging effect. The effect of coadsorbing oxygen was also studied.  相似文献   

19.
Uranyl (Ⅵ) amidoxime complexes are investigated using relativistic density functional theory. The equilibrium structures, bond orders, and Mulliken populations of the complexes have been systematically investigated under a generalized gradient approximation (GGA). Comparison of (acet) uranyl amidoxime complexes ([UO 2 (AO) n ] 2 n , 1≤ n ≤4) with available experimental data shows an excellent agreement. In addition, the U-O(1), U-O(3), C(1)-N(2), and C(3)-N(4) bond lengths of [UO 2 (CH 3 AO) 4 ] 2 are longer than experimental data by about 0.088, 0.05, 0.1, and 0.056 A. The angles of N(3)-O(3)-U, O(2)-N(1)-C(1), N(3)-C(3)-N(4), N(4)-C(3)-C(4), and C(4)-C(3)-N(3) are different from each other, which is due to existing interaction between oxygen in uranyl and hydrogen in amino group. This interaction is found to be intra-molecular hydrogen bond. Studies on the bond orders, Mulliken charges, and Mulliken populations demonstrate that uranyl oxo group functions as hydrogen-bond acceptors and H atoms in ligands act as hydrogen-bond donors forming hydrogen bonds within the complex.  相似文献   

20.
Classic molecular dynamics (MD) calculations were performed to investigate the deposition of thin hydrocarbon film. SiC (1 0 0) surfaces were bombarded with energetic CH3 molecules at impact energies ranging from 50 to 150 eV. The simulated results show that the deposition yield of H atoms decreases with increasing incident energy, which is in good agreement with experiments. During the initial stages, with breaking Si-C bonds in SiC by CH3 impacting, H atoms preferentially reacts with resulting Si to form Si-H bond. The C/H ratio in the grown films increases with increasing incident energy. In the grown films, CH species are dominant. For 50 eV, H-Csp3 bond is dominant. With increasing energy to 200 eV, the atomic density of H-Csp2 bond increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号