首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the transport and capacitance measurements of 10 nm wide GaAs quantum wells with hole densities around the critical point of the 2D metal-insulator transition (critical density p(c) down to 0.8 × 10(10)/cm2, r(s) ~ 36). For metallic hole density p(c) < p < p(c) + 0.15 × 10(10)/cm2, a reentrant insulating phase (RIP) is observed between the ν = 1 quantum Hall state and the zero-field metallic state and it is attributed to the formation of pinned Wigner crystal. Through studying the evolution of the RIP versus 2D hole density, we show that the RIP is incompressible and continuously connected to the zero-field insulator, suggesting a similar origin for these two phases.  相似文献   

2.
The metal-insulator transition (MIT) has been studied in Ba(0.9)Nd(0.1)CuO(2+x)/CaCuO2 ultrathin cuprate structures. Such structures allow for the direct measurement of the 2D sheet resistance R( square), eliminating ambiguity in the definition of the effective thickness of the conducting layer in high temperature superconductors. The MIT occurs at room temperature for experimental values of R(square) close to the 25.8 kOmega universal quantum resistance. All data confirm the assumption that each CaCuO2 layer forms a 2D superconducting sheet within the superconducting block, which can be described as weak-coupled equivalent sheets in parallel.  相似文献   

3.
We report a metal to insulator transition (MIT) in disordered films of molecularly linked gold nanoparticles (NPs). As the number of carbons (n) of alkanedithiol linker molecules (C(n)S2) is varied, resistance (R) at low temperature (T = 2 K) and at 200 K, as well as trends in R vs T data at intermediate temperatures, all point to an MIT occurring at n = 5. We describe these results in a context of a Mott-Hubbard MIT. We find that all insulating samples (n > or = 5) exhibit a universal scaling behavior R approximately exp[(T0/T)nu] with nu = 0.65, and all metallic samples (n < or = 5) exhibit weaker R-T dependencies than bulk gold. We discuss these observations in terms of competitive thermally activated processes and strong, T-independent elastic scattering, respectively.  相似文献   

4.
We report investigations of conductance fluctuations (with 1/f(alpha) power spectra) in doped silicon at low temperatures (T<20 K) as it is tuned through the metal-insulator transition (MIT) by changing the carrier concentration n. The scaled magnitude of noise, gamma(H), increases with decreasing T following an approximate power law gamma(H) approximately T-beta. At low T, gamma(H) diverges as n decreases through the critical concentration n(c), accompanied by a growth of low-frequency spectral weight. The second spectrum and probability density of the fluctuations show strong non-Gaussian behavior below 20 K as n/n(c) decreases through 1. This is interpreted as the onset of a glassy freezing of the electronic system across the MIT.  相似文献   

5.
Studies of low-frequency resistance noise show that the dramatic change in the dynamics of the two-dimensional electron system (2DES) in Si that occurs near the metal-insulator transition (MIT) persists in high parallel magnetic fields B such that the 2DES is fully spin polarized. This strongly suggests that charge, as opposed to spin, degrees of freedom are responsible for this effect. In the metallic phase, however, noise is suppressed by a parallel B, pointing to the role of spins. At low B, the temperature dependence of conductivity in the metallic phase provides evidence for a MIT.  相似文献   

6.
The approaching glass transition in polystyrene/toluene solutions leads to a sharp decay of both the collective diffusion coefficient D and the thermal diffusion coefficient D(T) at concentrations above 0.2 g/cm(3). The Soret coefficient S(T) = D(T)/D follows power-law scaling from semidilute to concentrated and is not influenced by the slowing down of the dynamics associated with the glass transition. Both D and D(T) are governed by the same friction coefficient. The scaling behavior of S(T) with concentration on approach of the glass transition is compared to the divergence of S(T) near a consolute critical point.  相似文献   

7.
We have observed a superconductor-insulator transition in one-dimensional (1D) arrays of small Josephson junctions by changing both the resistance R(S) of normal metal resistors shunting each junction and the ratio of the Josephson coupling energy E(J) to the charging energy E(C). The phase boundary lies at R(S) approximately R(Q) (R(Q) identical with h/4e(2)=6.45 kOmega) when E(J)/E(C) is smaller than about unity. We discuss the obtained phase diagram in terms of theoretical models of the dissipation-driven quantum phase transition, with particular attention to differences from 2D arrays.  相似文献   

8.
The temperature dependence of conductivity sigma(T) of a two-dimensional electron system in silicon has been studied in parallel magnetic fields B. At B = 0, the system displays a metal-insulator transition at a critical electron density n(c)(0), and dsigma/dT>0 in the metallic phase. At low fields ( B < or approximately equal to 2 T), n(c) increases as n(c)(B)-n(c)(0) proportional, variant Bbeta ( beta approximately 1), and the zero-temperature conductivity scales as sigma(n(s),B,T = 0)/sigma(n(s),0,0) = f(B(beta)/delta(n)), where delta(n) = [n(s)-n(c)(0)]/n(c)(0) and n(s) is electron density, as expected for a quantum phase transition. The metallic phase persists in fields of up to 18 T, consistent with the saturation of n(c) at high fields.  相似文献   

9.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density n(g): (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.  相似文献   

10.
We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical hopping t{ perpendicular}{c2}. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like "arcs" in photoemission experiments.  相似文献   

11.
We have studied the temperature dependent phonon emission rate P(T) of a strongly interacting (r(s) > or =22) dilute 2D GaAs hole system using a standard carrier heating technique. In the still poorly understood metallic state, we observe that P(T) changes from P(T) approximately T5 to P(T) approximately T7 above 100 mK, indicating a crossover from screened piezoelectric (PZ) coupling to screened deformation potential (DP) coupling for hole-phonon scattering. Quantitative comparison with theory shows that the long range PZ coupling between holes and phonons has the expected magnitude; however, in the metallic state, the short range DP coupling between holes and phonons is almost 20 times stronger than expected from theory. The density dependence of P(T) shows that it is easier to cool low-density 2D holes in GaAs than higher density 2D hole systems.  相似文献   

12.
Magnetoresistance is studied in a strongly correlated 2D electron system in Si in the critical regime in the close vicinity of the 2D metal-insulator transition. Our data are self-consistently compared with solutions of two equations of the crossover renormalization group theory, which describes temperature evolutions of the resistivity and interaction parameters for 2D electron systems. Good agreement is found between the ρ(T, B ) data and the renormalization group theory in a wide range of the in-plane fields, 0–2.1 T. This agreement supports the interpretation of the observed 2D MIT as the true quantum phase transition. The text was submitted by the authors in English.  相似文献   

13.
We report the electrical transport, magnetic, and thermodynamic properties of polycrystalline PdTe which exhibits superconductivity below 4.5 K. Using the measured values for the lower (H(c1)) and upper (H(c2)) critical fields, and the specific heat C(p), we estimate the thermodynamic critical field H(c)(0), coherence length ξ(0), penetration depth λ(0), and the Ginzburg-Landau parameter κ. Compared with band structure calculations, the density of states at the Fermi level is enhanced due to electron-phonon coupling with λ(ep) = 1.4. Furthermore, the large values of ΔC(p)/γ(n)T(c) and 2Δ(0)/k(B)T(c) suggest that PdTe is a strongly coupled superconductor.  相似文献   

14.
We present a study of the temperature and density dependence of the resistivity of an extremely high quality two-dimensional hole system grown on the (100) surface of GaAs. For high densities in the metallic regime (p > or approximately4x10;{9} cm;{-2}), the nonmonotonic temperature dependence ( approximately 50-300 mK) of the resistivity is consistent with temperature dependent screening of residual impurities. At a fixed temperature of T=50 mK, the conductivity versus density data indicate an inhomogeneity driven percolation-type transition to an insulating state at a critical density of 3.8x10;{9} cm;{-2}.  相似文献   

15.
We study thermodynamics of strongly coupled lattice QCD with two colors of staggered fermions in 2+1 dimensions. The partition function of this model can be written elegantly as a statistical mechanics of dimers and baryon loops. The model is invariant under an SO(3) x U(1) symmetry. At low temperatures, we find evidence for superfluidity in the U(1) symmetry sector while the SO(3) symmetry remains unbroken. The finite temperature phase transition appears to belong to the Kosterlitz-Thouless universality class, but the superfluid density jump rho(s) (T(c)) at the critical temperature T(c) is anomalously higher than the normal value of 2T(c)/pi. We show that, by adding a small SO(3) symmetry breaking term to the model, the superfluid density jump returns to its normal value, implying that the extra symmetry causes anomalous superfluid behavior. Our results may be of interest to researchers studying superfluidity in spin-1 systems.  相似文献   

16.
Macroscopic and robust supercurrents are observed by direct electron transport measurements on a silicon surface reconstruction with In adatoms [Si(111)-(√7 × √3)-In]. The superconducting transition manifests itself as an emergence of the zero resistance state below 2.8 K. I-V characteristics exhibit sharp and hysteretic switching between superconducting and normal states with well-defined critical and retrapping currents. The two-dimensional (2D) critical current density J(2D,c) is estimated to be as high as 1.8 A/m at 1.8 K. The temperature dependence of J(2D,c) indicates that the surface atomic steps play the role of strongly coupled Josephson junctions.  相似文献   

17.
Only 3% hole doping by Li is sufficient to suppress the long-range three-dimensional (3D) antiferromagnetic order in La2CuO4. The spin dynamics of such a 2D spin liquid state at T相似文献   

18.
The investigation of the penetration depth lambda(ab)(T,p) in YBa2Cu3O7-x crystals allowed one to observe the following features of the superfluid density n(s)(T,p) proportional, variant lambda(-2)(ab)(T,p) as a function of temperature T0) depends on p slightly in the optimally and moderately doped regions (0.10相似文献   

19.
We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.  相似文献   

20.
The S = 1/2 Heisenberg model is considered on bilayer and single-layer square lattices with couplings J1, J2, with each spin belonging to one J2-coupled dimer. A transition from a Néel to disordered ground state occurs at a critical value of g = J2/J1. The systems are here studied at their dimer-dilution percolation points p*. The multicritical point (g*,p*) previously found for the bilayer is not reproduced for the single layer. Instead, there is a line of critical points (g < g*, p*) with continuously varying exponents. The uniform magnetic susceptibility diverges as T(-alpha) with alpha element of [1/2,1]. This unusual behavior is attributed to an effective free-moment density approximately T(1-alpha). The susceptibility of the bilayer is not divergent but exhibits remarkably robust quantum-critical scaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号