共查询到20条相似文献,搜索用时 15 毫秒
1.
Scale-free networks on lattices 总被引:1,自引:0,他引:1
We suggest a method for embedding scale-free networks, with degree distribution Pk approximately k(-lambda), in regular Euclidean lattices accounting for geographical properties. The embedding is driven by a natural constraint of minimization of the total length of the links in the system. We find that all networks with lambda>2 can be successfully embedded up to a (Euclidean) distance xi which can be made as large as desired upon the changing of an external parameter. Clusters of successive chemical shells are found to be compact (the fractal dimension is df=d), while the dimension of the shortest path between any two sites is smaller than 1: dmin=(lambda-2)/(lambda-1-1/d), contrary to all other known examples of fractals and disordered lattices. 相似文献
2.
In this paper, we proposed an ungrowing scale-free network model, indicating the growth may not be a necessary condition of the self-organization of a network in a scale-free structure. The analysis shows that the degree distributions of the present model can varying from the Poisson form to the power-law form with the decrease of a free parameter α. This model provides a possible mechanism for the evolution of some scale-free networks with fixed size, such as the friendship networks of school children and the functional networks of the human brain. 相似文献
3.
Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b) the characteristic path length is small and comparable with those of equivalent random networks, and (c) the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states. 相似文献
4.
A new mechanism leading to scale-free networks is proposed in this Letter. It is shown that, in many cases of interest, the connectivity power-law behavior is neither related to dynamical properties nor to preferential attachment. Assigning a quenched fitness value x(i) to every vertex, and drawing links among vertices with a probability depending on the fitnesses of the two involved sites, gives rise to what we call a good-get-richer mechanism, in which sites with larger fitness are more likely to become hubs (i.e., to be highly connected). 相似文献
5.
Liang Wu 《Physica A》2008,387(14):3789-3795
A network growth model with geographic limitation of accessible information about the status of existing nodes is investigated. In this model, the probability Π(k) of an existing node of degree k is found to be super-linear with Π(k)∼kα and α>1 when there are links from new nodes. The numerical results show that the constructed networks have typical power-law degree distributions P(k)∼k−γ and the exponent γ depends on the constraint level. An analysis of local structural features shows the robust emergence of scale-free network structure in spite of the super-linear preferential attachment rule. This local structural feature is directly associated with the geographical connection constraints which are widely observed in many real networks. 相似文献
6.
Preferential attachment is considered one of the key factors in the formation of scale-free networks. However, complete random attachment without a preferential mechanism can also generate scale-free networks in nature, such as protein interaction networks in cells. This article presents a new scale-free network model that applies the following general mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach to random neighbors of random vertices that are already well connected. The proposed model does not require global-based preferential strategies and utilizes only the random attachment method. Theoretical analysis and numerical simulation results denote that the proposed model has steady scale-free network characteristics, and random attachment without a preferential mechanism may generate scale-free networks. 相似文献
7.
8.
In [Y.-B. Xie, T. Zhou, B.-H. Wang, Scale-free networks without growth, Physica A 387 (2008) 1683-1688], a nongrowing scale-free network model has been introduced, which shows that the degree distribution of the model varies from the power-law form to the Poisson form as the free parameter α increases, and indicates that the growth may not be necessary for a scale-free network structure to emerge. However, the model implicitly assumes that self-loops and multiple-links are allowed in the model and counted in the degree distribution. In many real-life networks, such an assumption may not be reasonable. We showed here that the degree distribution of the emergent network does not obey a power-law form if self-loops and multiple-links are allowed in the model but not counted in the degree distribution. We also observed the same result when self-loops and multiple-links are not allowed in the model. Furthermore, we showed that the effect of self-loops and multiple-links on the degree distribution weakens as α increases and even becomes negligible when α is sufficiently large. 相似文献
9.
Scale-free human migration and the geography of social networks 总被引:1,自引:0,他引:1
Moshe Levy 《Physica A》2010,389(21):4913-7668
The “gravitational law of social interaction”, by which the probability of a social link decreases inversely with the square of the geographic distance, has been recently documented. The source of this spatial property of social networks, however, is yet unknown. The formation of social links is related to human dynamics both on the day-to-day, typically small scale, level of mobility, and on larger scale migration (or reallocation) movements. In this study we analyze human migration patterns by investigating the migration of 46.8 million individuals across the US during 1995-2000. We find that the probability of migration decreases as a power law of the distance, with exponent −1. We show that this finding offers an explanation for the gravitational law of social interaction. Possible explanations and implications of the scale-free migration pattern are discussed. 相似文献
10.
In this study, we present empirical analysis of statistical properties of mating networks in genetic algorithms (GAs). Under the framework of GAs, we study a class of interaction network model—information flux network (IFN), which describes the information flow among generations during evolution process. The IFNs are found to be scale-free when the selection operator uses a preferential strategy rather than a random. The topology structure of IFN is remarkably affected by operations used in genetic algorithms. The experimental results suggest that the scaling exponent of the power-law degree distribution is shown to decrease when crossover rate increases, but increase when mutation rate increases, and the reason may be that high crossover rate leads to more edges that are shared between nodes and high mutation rate leads to many individuals in a generation possessing low fitness. The magnitude of the out-degree exponent is always more than the in-degree exponent for the systems tested. These results may provide a new viewpoint with which to view GAs and guide the dissemination process of genetic information throughout a population. 相似文献
11.
12.
借助排队系统中顾客批量到达的概念,提出节点批量到达的Poisson网络模型.节点按照到达率为λ的Poisson过程批量到达系统.模型1,批量按照到达批次的幂律非线性增长,其幂律指数为θ(0≤θ<+∞).BA模型是在θ=0时的特例.利用Poisson过程理论和连续化方法进行分析,发现这个网络稳态平均度分布是幂律分布,而且幂律指数在1和3之间.模型2,批量按照节点到达批次的对数非线性增长,得出当批量增长较缓慢时,稳态度分布幂律指数为3.因此,节点批量到达的Poisson网络模型不仅是BA模型的推广,也为许多幂律指数在1和2之间的现实网络提供了理论依据. 相似文献
13.
14.
We study the evolution of cooperation in the framework of evolutionary game theory, adopting the prisoner's dilemma and snowdrift game as metaphors of cooperation between unrelated individuals. In sharp contrast with previous results we find that, whenever individuals interact following networks of contacts generated via growth and preferential attachment, leading to strong correlations between individuals, cooperation becomes the dominating trait throughout the entire range of parameters of both games, as such providing a unifying framework for the emergence of cooperation. Such emergence is shown to be inhibited whenever the correlations between individuals are decreased or removed. These results are shown to apply from very large population sizes down to small communities with nearly 100 individuals. 相似文献
15.
Scale-free network growth by ranking 总被引:2,自引:0,他引:2
Network growth is currently explained through mechanisms that rely on node prestige measures, such as degree or fitness. In many real networks, those who create and connect nodes do not know the prestige values of existing nodes but only their ranking by prestige. We propose a criterion of network growth that explicitly relies on the ranking of the nodes according to any prestige measure, be it topological or not. The resulting network has a scale-free degree distribution when the probability to link a target node is any power-law function of its rank, even when one has only partial information of node ranks. Our criterion may explain the frequency and robustness of scale-free degree distributions in real networks, as illustrated by the special case of the Web graph. 相似文献
16.
We study the realizability of scale-free networks with a given degree sequence, showing that the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical method, proposed here, based on extreme value arguments, which can be applied to any given degree distribution. Our results reveal a fundamental reason why large scale-free networks without constraints on minimum and maximum degree must be sparse. 相似文献
17.
A simple model of activatory-inhibitory interactions controlling the activity of agents (substrates) through a "saturated response" dynamical rule in a scale-free network is thoroughly studied. After discussing the most remarkable dynamical features of the model, namely fragmentation and multistability, we present a characterization of the temporal (periodic and chaotic) fluctuations of the quasi-stasis asymptotic states of network activity. The double (both structural and dynamical) source of entangled complexity of the system temporal fluctuations, as an important partial aspect of the correlation structure-function problem, is further discussed in light of the numerical results, with a view on potential applications of these general results. 相似文献
18.
A maximum entropy (ME) method to generate typical scale-free networks has been recently introduced. We investigate the controllability of ME networks and Barabási–Albert preferential attachment networks. Our experimental results show that ME networks are significantly more easily controlled than BA networks of the same size and the same degree distribution. Moreover, the control profiles are used to provide insight into control properties of both classes of network. We identify and classify the driver nodes and analyze the connectivity of their neighbors. We find that driver nodes in ME networks have fewer mutual neighbors and that their neighbors have lower average degree. We conclude that the properties of the neighbors of driver node sensitively affect the network controllability. Hence, subtle and important structural differences exist between BA networks and typical scale-free networks of the same degree distribution. 相似文献
19.
Jan von Delft 《Annalen der Physik》2001,10(3):219-276
We review recent experimental and theoretical work on superconductivity in ultrasmall metallic grains, i.e. grains sufficiently small that the conduction electron energy spectrum becomes discrete. The discrete excitation spectrum of an individual grain can be measured by the technique of single‐electron tunneling spectroscopy, and reveals parity effects indicative of pairing correlations in the grain. After introducing the discrete BCS model that has been used to model such grains, we review a phenomenological, grand‐canonical, variational BCS theory describing the paramagnetic breakdown of these pairing correlations with increasing magnetic field. We also review recent canonical theories that have been developed to describe how pairing correlations change during the crossover, with decreasing grain size, from the bulk limit to the limit of few electrons, and compare their results to those obtained using Richardson's exact solution of the discrete BCS model. 相似文献
20.
We solve three-dimensional euclidean quantum gravity by producing a formulation in which the space-time continuum is replaced by a simplicial complex, whose combinatories are those of the addition of angular momenta. This spin-network defines a path-integral representation of gravity based on the Einstein action. Space-time foam emerges naturally from this approach. 相似文献