首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We investigate collision of two atoms in an external magnetic field and in the field of laser radiation with formation of Fano-Feshbach resonances. At one-photon resonance of laser radiation with two discrete vibrational states of molecule the dressed states are formed (Autler-Townes effect) which form Fano-Feshbach resonances in interaction with the external magnetic field. In addition, the lower molecular vibrational state is coupled with the continuum of the elastic channel via also LICS (laser-induced continuum structure) forming laser-induced resonance. We obtain cross-sections of elastic and inelastic resonant scattering and expression for the scattering length depending on the external magnetic and laser radiation fields.  相似文献   

2.
《Physics letters. A》2014,378(1-2):43-47
We theoretically investigate optical control of magnetic Feshbach resonance in Bose gases with two optical fields. The two optical fields couple two ground states through an excited state. Compared with the usual single-optical scheme, two optical fields can greatly suppress the inelastic loss resulting from spontaneous emission by the destructive quantum interference. Using the mean field theory, the analytical formula of the scattering length is obtained. The results show that the scattering length can be modified in a large range by changing the Rabi frequency or the optical field frequency. The strong atom–molecule interaction has obvious effect on the scattering length.  相似文献   

3.
We have measured the interaction energy and three-body recombination rate for a two-component Fermi gas near a narrow Feshbach resonance and found both to be strongly energy dependent. Even for de Broglie wavelengths greatly exceeding the van der Waals length scale, the behavior of the interaction energy as a function of temperature cannot be described by atoms interacting via a contact potential. Rather, energy-dependent corrections beyond the scattering length approximation are required, indicating a resonance with an anomalously large effective range. For fields where the molecular state is above threshold, the rate of three-body recombination is enhanced by a sharp, two-body resonance arising from the closed-channel molecular state which can be magnetically tuned through the continuum. This narrow resonance can be used to study strongly correlated Fermi gases that simultaneously have a sizable effective range and a large scattering length.  相似文献   

4.
We have studied the scaling of the interaction in Bose-Einstein condensates of ultracold alkali-metal gases for large scattering lengths and momenta where corrections to the mean field approximation become important. We find that the effective interaction in the metastable, open channel, gaseous phase scales well with the scattering length in the range analyzed. Based on this we show that for increasing scattering lengths, or equivalently increasing densities, the system becomes less correlated, and that at large scattering lengths Bragg scattering experiments can directly measure the effective two-body potential in momentum space. This work is motivated by the recent Bragg-scattering measurements in 85Rb by Papp et al. [Phys. Rev. Lett. 101, 135301 (2008)], where the results in the line shifts show clear deviations from the simple contact interaction. We show that those results are well described by a soft spheres potential with parameters chosen to scale in scattering length units. So far the resolution in the experiments does not reveal details on the frequency dependence in the dynamic structure function S(k,ω) and we show that the Feynman spectrum determines the measured line shifts. We also construct the effective atom-atom interaction from two coupled channels, open and closed, assuming that the Feshbach resonance dominates the closed channel. The resonance energy and the scattering length a of the system are tunable by magnetic fields. We derive the T-matrix of such a system and use renormalization to calculate the bound state energy as a function of the magnetic field and make comparison with available experiments. The s-wave phase shifts determine the local, effective open-channel interaction, but if no scaling is used in the cut-off parameters of the renormalization the phase shift resembles more and more the ones obtained from the contact interaction with increasing scattering length. This leads to clear deviations from the measured line shift experiments.  相似文献   

5.
The change in the magnetic domain structure due to the proximity of a superconductor has been experimentally investigated for the first time. The complex character of magnetization reversal at temperatures below critical, caused by the mutual long-range effect of a superconductor and a magnet, has been shown. In particular, it is found that even magnetization reversal of the heterostructure by an in-plane field leads to the formation of Abrikosov vortices in the superconductor, carrying a flux perpendicularly to the film plane. It is shown that this is a consequence of the transformation of narrow domain walls into wide stripes due to the interaction with scattering fields from the superconductor. In turn, after penetration of the magnetic flux into the superconductor at some depth, the scattering fields cause backward magnetization reversal of the external film edge, as a result of which vortices with oppositely directed fluxes enter the crystal and propagate in the superconductor bulk in the form of chains along twins, as in the case of magnetization by a perpendicular magnetic field. Thus, at longitudinal magnetization, the flux enters the superconducting film in the form of wide stripes with alternating perpendicular induction, which is explained by the long-range interaction of the scattering fields of the superconductor with the manganite magnetization.  相似文献   

6.
We perform three-body calculations of trimers and atom-dimer scattering near a Feshbach resonance using two interaction models. The first model is a one-channel zero-range model, where the scattering length follows the phenomenological dependence on the external magnetic field. The second is a two-channel model capable to describe the Feshbach resonance. The scattering length dependence on magnetic detuning is recovered. We compare the predictions of these two models, and show that near a Feshbach resonance important differences are expected.  相似文献   

7.
We report small angle neutron scattering of the Skyrmion lattice in MnSi using an experimental setup that minimizes the effects of demagnetizing fields and double scattering. Under these conditions, the Skyrmion lattice displays resolution-limited Gaussian rocking peaks that correspond to a magnetic correlation length in excess of several hundred micrometers. This is consistent with exceptionally well-defined long-range order. We further establish the existence of higher-order scattering, discriminating parasitic double scattering with Renninger scans. The field and temperature dependence of the higher-order scattering arises from an interference effect. It is characteristic for the long-range crystalline nature of the Skyrmion lattice as shown by simple mean-field calculations.  相似文献   

8.
The possibility of indirect exchange coupling mediated by Landau electrons bound to magnetic impurities in 2DES is studied here. The importance of the resonance scattering of the Landau electrons with the impurities is emphasized due to its spin selectivity which results in strong spin polarization of the localized Landau states. The bound Landau states act as mediators of the superexchange interaction resulting in an antiferromagnetic interaction between the nuclear spins of the impurities. The coupling constant, between these nuclear spins, J, is presented for the case of a weak scattering limit and found to depend strongly on the ratio of the impurity separation over the magnetic length. Possible applications of these results may include a long-range mechanism for coupling between two nuclear spins to be used as a qubits interaction with a spacing distance of the order of the magnetic length.  相似文献   

9.
We propose a general method for optical control of magnetic Feshbach resonances in ultracold atomic gases with more than one molecular state in an energetically closed channel. Using two optical frequencies to couple two states in the closed channel, inelastic loss arising from spontaneous emission is greatly suppressed by destructive quantum interference at the two-photon resonance, i.e., dark-state formation, while the scattering length is widely tunable by varying the frequencies and/or intensities of the optical fields. This technique is of particular interest for a two-component atomic Fermi gas, which is stable near a Feshbach resonance.  相似文献   

10.
Magnetism in the reentrant superconductor ErRh4B4 has been studied by neutron scattering as a function of an applied magnetic field. For a temperature of 1.69 K long-range ferromagnetism is found in fields higher than 1 kOe. Considerable hysteresis is found in the neutron scattering intensity vs magnetic field curve and long-range order with a small Er moment remains when the field is reduced to small values.  相似文献   

11.
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.  相似文献   

12.
The first applications of polarized neutrons were to distinguish magnetic from nuclear scattering amplitudes. Much later the first set-ups for measuring the precession phase of the polarization passing a magnetic field were realized. This phase, determined by the field strength and interaction time, could label magnetic fields, wavelength of the neutrons and length over which the field is present. The latter could be used by proper shaping of the magnetic field to label also the direction of transmitted neutrons. The advantage of this labeling is that high precision measurements are possible without strong confinement of the beam by diaphragms. An overview of the use of Larmor labeling of polarized neutrons is given for applications in magnetism, in inelastic neutron scattering and small angle scattering.  相似文献   

13.
By solving the effective mass equation with the variational method, we studied the cyclotronresonance of magnetopolaron in cylindrical quan t um wires with arbitrary magnetic fields.The interaction of the electron with surface-optical (SO) phonons is used. Having calculatedthe ground state energy and the excited state energy of the magnetopolaron, we obtain thecyclotron resonance frequency of the magnetopolaron. The effect of the electron-SO phononinteraction decreases the cyclotron resonance frequency. Furthermore, with the increasingstrength of magnetic fields, the cyclotron resonance frequency of the magnetopolaron form = 1 (m = -1) increases (decreases) monotonously. When the confinement energy is muchless than the Landau quantization energy, our results tend to the bulk case correctly. Forthe same magnetic field strength, our results show that, the larger the confinement length ofthe quantum wire is, the smaller the absolute value of the electron-SO phonon interactionenergy and the cyclotron resonance frequency are.  相似文献   

14.
Experimental data are reported on studying cyclotron resonance in a two-dimensional electron system with an artificial random scattering potential generated by an array of self-organized AlInAs quantum islands formed in the plane of an AlGaAs/GaAs heterojunction. A sharp narrowing of the cyclotron resonance line is observed as the magnetic field increases, which is explained by the specific features of carrier scattering in this potential. The results obtained point to the formation of a strongly correlated electron state in strong magnetic fields at carrier concentrations smaller than the concentration of antidots.  相似文献   

15.
For a one-elastic-constant model of nematic liquid crystal the optical theorem is shown to produce an explicit relationship between the scattering length of extraordinary wave mode and magnetic coherence length. The Monte Carlo simulation of coherent backscattering is performed accounting for the long-range orientational fluctuations and scattering length anisotropy; the coherent backscattering peak is shown to change quite weakly while the magnetic field varies several orders.  相似文献   

16.
The scattering length is commonly used to characterize the strength of ultracold atomic interactions, since it is the leading parameter in the low-energy expansion of the scattering phase shift. Its value can be modified via a magnetic field, by using a Feshbach resonance. However, the effective range term, which is the second parameter in the phase shift expansion, determines the width of the resonance and gives rise to important properties of ultracold gases. Independent control over this parameter is not possible by using a magnetic field only. We demonstrate that a combination of magnetic and electric fields can be used to get independent control over both parameters, which leads to full control over elastic ultracold interactions.  相似文献   

17.
The magnetotransport in a two-dimensional electron gas with a lattice of antidots, which has a record-breaking small (80 nm) period and size (20–40 nm) of antidots comparable with the de Broglie wavelength of electrons, has been experimentally studied. A wide variety of new features of the magnetoresistance behavior has been observed both under semiclassical conditions and in the regime of quantizing magnetic fields. In particular, the anomalous semiclassical magnetoresistance peak induced by the nonmonotonic scattering effects has been revealed. The Shubnikov-de Haas oscillations have been revealed to exhibit an unusual transition from the anomalous period constant in the magnetic field to the normal constant in the inverse magnetic field. The effect of the generation and suppression of the oscillations has also been observed; this effect is induced by the transformation of the short and long-range scattering potentials in the lattice owing to the variation of the density of the two-dimensional electrons.  相似文献   

18.
We investigate the vortex state in a two-band superconductor with strong intraband and weak interband electronic scattering rates. Coupled Usadel equations are solved numerically, and the distributions of the pair potentials and local densities of states are calculated for two bands at different values of magnetic fields. The existence of two distinct length scales corresponding to different bands is demonstrated. The results provide qualitative interpretation of recent scanning tunneling microscopy experiments on vortex structure imaging in MgB2.  相似文献   

19.
The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.Work supported by the BMFT  相似文献   

20.
A long-range dynamic interaction between ferromagnetic films separated by normal-metal spacers is reported, which is communicated by nonequilibrium spin currents. It is measured by ferromagnetic resonance and explained by an adiabatic spin-pump theory. In such a resonance the spin-pump mechanism of spatially separated magnetic moments leads to an appreciable increase in the resonant linewidth when the resonance fields are well apart, and results in a dramatic linewidth narrowing when the resonant fields approach each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号