首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A fast solution algorithm is proposed for solving block banded block Toeplitz systems with non-banded Toeplitz blocks. The algorithm constructs the circulant transformation of a given Toeplitz system and then by means of the Sherman-Morrison-Woodbury formula transforms its inverse to an inverse of the original matrix. The block circulant matrix with Toeplitz blocks is converted to a block diagonal matrix with Toeplitz blocks, and the resulting Toeplitz systems are solved by means of a fast Toeplitz solver.The computational complexity in the case one uses fast Toeplitz solvers is equal to ξ(m,n,k)=O(mn3)+O(k3n3) flops, there are m block rows and m block columns in the matrix, n is the order of blocks, 2k+1 is the bandwidth. The validity of the approach is illustrated by numerical experiments.  相似文献   

2.
The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess additional symmetry properties, split algorithms are designed and their relations to butterfly factorizations are developed.  相似文献   

3.
Diagonally dominant tridiagonal Toeplitz systems of linear equations arise in many application areas and have been well studied in the past. Modern interest in numerical linear algebra is often focusing on solving classic problems in parallel. In McNally [Fast parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick, Saint John, 1999], an m processor Split & Correct algorithm was presented for approximating the solution to a symmetric tridiagonal Toeplitz linear system of equations. Nemani [Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University of New Brunswick, Saint John, 2001] and McNally (2003) adapted the works of Rojo [A new method for solving symmetric circulant tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61–67], Yan and Chung [A fast algorithm for solving special tri-diagonal systems, Computing 52 (1994) 203–211] and McNally et al. [A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Internat. J. Comput. Math. 75 (2000) 303–313] to the non-symmetric case. In this paper we present relevant background from these methods and then introduce an m processor scalable communication-less approximation algorithm for solving a diagonally dominant tridiagonal Toeplitz system of linear equations.  相似文献   

4.
For the first time, perturbation bounds including componentwise perturbation bounds for the block LU factorization have been provided by Dopico and Molera (2005) [5]. In this paper, componentwise error analysis is presented for computing the block LU factorization of nonsingular totally nonnegative matrices. We present a componentwise bound on the equivalent perturbation for the computed block LU factorization. Consequently, combining with the componentwise perturbation results we derive componentwise forward error bounds for the computed block factors.  相似文献   

5.
Lagrange's interpolation formula is generalized to tangential interpolation. This includes interpolation by vector polynomials and by rational vector functions with prescribed pole characteristics. The formula is applied to obtain representations of the inverses of Cauchy-Vandermonde matrices generalizing former results.  相似文献   

6.
Summary We obtain explicit formulas for the entries of the inverse of a nonsingular and irreducible tridiagonal k–Toeplitz matrix A. The proof is based on results from the theory of orthogonal polynomials and it is shown that the entries of the inverse of such a matrix are given in terms of Chebyshev polynomials of the second kind. We also compute the characteristic polynomial of A which enables us to state some conditions for the existence of A–1. Our results also extend known results for the case when the residue mod k of the order of A is equal to 0 or k–1 (Numer. Math., 10 (1967), pp. 153–161.).The work was supported by CMUC (Centro de Matemática da Universidade de Coimbra) and by Acção Integrada Luso-Espanhola E-6/03  相似文献   

7.
Bar‐On  Ilan  Leoncini  Mauro 《Numerical Algorithms》1998,18(3-4):361-388
In this paper we present three different pivoting strategies for solving general tridiagonal systems of linear equations. The first strategy resembles the classical method of Gaussian elimination with no pivoting and is stable provided a simple and easily checkable condition is met. In the second strategy, the growth of the elements is monitored so as to ensure backward stability in most cases. Finally, the third strategy also uses the right‐hand side vector to make pivoting decisions and is proved to be unconditionally backward stable. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We derive necessary and sufficient conditions for guaranteeing the nonsingularity of a block two-by-two matrix by making use of the singular value decompositions and the Moore–Penrose pseudoinverses of the matrix blocks. These conditions are complete, and much weaker and simpler than those given by Decker and Keller [D.W. Decker, H.B. Keller, Multiple limit point bifurcation, J. Math. Anal. Appl. 75 (1980) 417–430], and may be more easily examined than those given by Bai [Z.-Z. Bai, Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks, J. Comput. Appl. Math. 237 (2013) 295–306] from the computational viewpoint. We also derive general formulas for the rank of the block two-by-two matrix by utilizing either the unitarily compressed or the orthogonally projected sub-matrices.  相似文献   

9.
Banded Toeplitz systems of linear equations arise in many application areas and have been well studied in the past. Recently, significant advancement has been made in algorithm development of fast parallel scalable methods to solve tridiagonal Toeplitz problems. In this paper we will derive a new algorithm for solving symmetric pentadiagonal Toeplitz systems of linear equations based upon a technique used in [J.M. McNally, L.E. Garey, R.E. Shaw, A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Int. J. Comput. Math. 75 (2000) 303-313] for tridiagonal Toeplitz systems. A common example which arises in natural quintic spline problems will be used to demonstrate the algorithm’s effectiveness. Finally computational results and comparisons will be presented.  相似文献   

10.
Summary The solution of systems of linear equations with Hankel coefficient matrices can be computed with onlyO(n 2) arithmetic operations, as compared toO(n 3) operations for the general cases. However, the classical Hankel solvers require the nonsingularity of all leading principal submatrices of the Hankel matrix. The known extensions of these algorithms to general Hankel systems can handle only exactly singular submatrices, but not ill-conditioned ones, and hence they are numerically unstable. In this paper, a stable procedure for solving general nonsingular Hankel systems is presented, using a look-ahead technique to skip over singular or ill-conditioned submatrices. The proposed approach is based on a look-ahead variant of the nonsymmetric Lanczos process that was recently developed by Freund, Gutknecht, and Nachtigal. We first derive a somewhat more general formulation of this look-ahead Lanczos algorithm in terms of formally orthogonal polynomials, which then yields the look-ahead Hankel solver as a special case. We prove some general properties of the resulting look-ahead algorithm for formally orthogonal polynomials. These results are then utilized in the implementation of the Hankel solver. We report some numerical experiments for Hankel systems with ill-conditioned submatrices.The research of the first author was supported by DARPA via Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research Association (USRA).The research of the second author was supported in part by NSF grant DRC-8412314 and Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research Association (USRA).  相似文献   

11.
12.
In this paper we design a fast new algorithm for reducing an N × N quasiseparable matrix to upper Hessenberg form via a sequence of N − 2 unitary transformations. The new reduction is especially useful when it is followed by the QR algorithm to obtain a complete set of eigenvalues of the original matrix. In particular, it is shown that in a number of cases some recently devised fast adaptations of the QR method for quasiseparable matrices can benefit from using the proposed reduction as a preprocessing step, yielding lower cost and a simplification of implementation.  相似文献   

13.
In this paper we consider the numerical stability of fast algorithms for discrete cosine transform (DCT) of type III and II, respectively. We show that various fast DCTs can possess a very different behaviour of numerical stability. By matrix factorizations we find that a complex fast DCT which is based mainly on a fast Fouier transform has a better numerical stability than a real fast DCT despite its larger arithmetical complexity. Numerical tests illustrate our theoretical results.  相似文献   

14.
A solution is given for a problem on eigenvalues of some symmetric tridiagonal matrices suggested by William Trench. The method presented can be generalizable to other problems.  相似文献   

15.
Here are considered matrices represented as a sum of diagonal and semiseparable ones. These matrices belong to the class of structured matrices which arises in numerous applications. FastO(N) algorithms for their inversion were developed before under additional restrictions which are a source of instability. Our aim is to eliminate these restrictions and to develop reliable and stable numerical algorithms. In this paper we obtain such algorithms with the only requirement that the considered matrix is invertible and its determinant is not close to zero. The case of semiseparable matrices of order one was considered in detail in an earlier paper of the authors.  相似文献   

16.
Let A be a matrix whose sparsity pattern is a tree with maximal degree dmax. We show that if the columns of A are ordered using minimum degree on |A|+|A|, then factoring A using a sparse LU with partial pivoting algorithm generates only O(dmaxn) fill, requires only O(dmaxn) operations, and is much more stable than LU with partial pivoting on a general matrix. We also propose an even more efficient and just-as-stable algorithm called sibling-dominant pivoting. This algorithm is a strict partial pivoting algorithm that modifies the column preordering locally to minimize fill and work. It leads to only O(n) work and fill. More conventional column pre-ordering methods that are based (usually implicitly) on the sparsity pattern of |A||A| are not as efficient as the approaches that we propose in this paper.  相似文献   

17.
The spectral properties of a class of tridiagonal matrices are investigated. The reconstruction of matrices of this special class from given spectral data is also studied. Necessary and sufficient conditions for that reconstruction are found. The obtained results extend some results on the direct and inverse spectral problems for periodic Jacobi matrices and for some non-self-adjoint tridiagonal matrices.  相似文献   

18.
Summary We discuss block matrices of the formA=[A ij ], whereA ij is ak×k symmetric matrix,A ij is positive definite andA ij is negative semidefinite. These matrices are natural block-generalizations of Z-matrices and M-matrices. Matrices of this type arise in the numerical solution of Euler equations in fluid flow computations. We discuss properties of these matrices, in particular we prove convergence of block iterative methods for linear systems with such system matrices.  相似文献   

19.
We study the solutions of Toeplitz systemsA n x=b by the preconditioned conjugate gradient method. Then ×n matrixA n is of the forma 0 I+H n wherea 0 is a real number,I is the identity matrix andH n is a skew-Hermitian Toeplitz matrix. Such matrices often appear in solving discretized hyperbolic differential equations. The preconditioners we considered here are the circulant matrixC n and the skew-circulant matrixS n whereA n =1/2(C n +S n ). The convergence rate of the iterative method depends on the distribution of the singular values of the matricesC –1 n An andS –1 n A n . For Toeplitz matricesA n with entries which are Fourier coefficients of functions in the Wiener class, we show the invertibility ofC n andS n and prove that the singular values ofC –1 n A n andS –1 n A n are clustered around 1 for largen. Hence, if the conjugate gradient method is applied to solve the preconditioned systems, we expect fast convergence.  相似文献   

20.
We express the eigenvalues of a pentadiagonal symmetric Toeplitz matrix as the zeros of explicitly given rational functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号