首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

2.
The inertia of a Hermitian matrix is defined to be a triplet composed of the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we show some basic formulas for inertias of 2×2 block Hermitian matrices. From these formulas, we derive various equalities and inequalities for inertias of sums, parallel sums, products of Hermitian matrices, submatrices in block Hermitian matrices, differences of outer inverses of Hermitian matrices. As applications, we derive the extremal inertias of the linear matrix expression A-BXB with respect to a variable Hermitian matrix X. In addition, we give some results on the extremal inertias of Hermitian solutions to the matrix equation AX=B, as well as the extremal inertias of a partial block Hermitian matrix.  相似文献   

3.
An n×m real matrix A is said to be totally positive (strictly totally positive) if every minor is nonnegative (positive). In this paper, we study characterizations of these classes of matrices by minors, by their full rank factorization and by their thin QR factorization.  相似文献   

4.
5.
Our goal is to identify and understand matrices A that share essential properties of the unitary Hessenberg matrices M that are fundamental for Szegö’s orthogonal polynomials. Those properties include: (i) Recurrence relations connect characteristic polynomials {rk(x)} of principal minors of A. (ii) A is determined by generators (parameters generalizing reflection coefficients of unitary Hessenberg theory). (iii) Polynomials {rk(x)} correspond not only to A but also to a certain “CMV-like” five-diagonal matrix. (iv) The five-diagonal matrix factors into a product BC of block diagonal matrices with 2 × 2 blocks. (v) Submatrices above and below the main diagonal of A have rank 1. (vi) A is a multiplication operator in the appropriate basis of Laurent polynomials. (vii) Eigenvectors of A can be expressed in terms of those polynomials.Conditions (v) connects our analysis to the study of quasi-separable matrices. But the factorization requirement (iv) narrows it to the subclass of “Green’s matrices” that share Properties (i)-(vii).The key tool is “twist transformations” that provide 2n matrices all sharing characteristic polynomials of principal minors with A. One such twist transformation connects unitary Hessenberg to CMV. Another twist transformation explains findings of Fiedler who noticed that companion matrices give examples outside the unitary Hessenberg framework. We mention briefly the further example of a Daubechies wavelet matrix. Infinite matrices are included.  相似文献   

6.
The scrambling index of symmetric primitive matrices   总被引:2,自引:0,他引:2  
A nonnegative square matrix A is primitive if some power Ak>0 (that is, Ak is entrywise positive). The least such k is called the exponent of A. In [2], Akelbek and Kirkland defined the scrambling index of a primitive matrix A, which is the smallest positive integer k such that any two rows of Ak have at least one positive element in a coincident position. In this paper, we give a relation between the scrambling index and the exponent for symmetric primitive matrices, and determine the scrambling index set for the class of symmetric primitive matrices. We also characterize completely the symmetric primitive matrices in this class such that the scrambling index is equal to the maximum value.  相似文献   

7.
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) ? (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116]. In this paper, we show that for each 3 ? b ? n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.  相似文献   

8.
In a recent paper, Neumann and Sze considered for an n × n nonnegative matrix A, the minimization and maximization of ρ(A + S), the spectral radius of (A + S), as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an n × n permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1, we consider here, for positive matrices A such that (A + N) is a nonnegative matrix, for all normal matrices N whose spectral radius is 1, the minimization and maximization problems of ρ(A + N) as N ranges over all such matrices. We show that the extremal values always occur at an n × n real unitary matrix. We compare our results with a less recent work of Han, Neumann, and Tastsomeros in which the maximum value of ρ(A + X) over all n × n real matrices X of Frobenius norm was sought.  相似文献   

9.
Let be a partitioned matrix, where A and D are square matrices. Denote the Drazin inverse of A by AD. The purpose of this paper is twofold. Firstly, we develop conditions under which the Drazin inverse of M having generalized Schur complement, S=D-CADB, group invertible, can be expressed in terms of a matrix in the Banachiewicz-Schur form and its powers. Secondly, we deal with partitioned matrices satisfying rank(M)=rank(AD)+rank(SD), and give conditions under which the group inverse of M exists and a formula for its computation.  相似文献   

10.
A collection A1A2, …, Ak of n × n matrices over the complex numbers C has the ASD property if the matrices can be perturbed by an arbitrarily small amount so that they become simultaneously diagonalizable. Such a collection must perforce be commuting. We show by a direct matrix proof that the ASD property holds for three commuting matrices when one of them is 2-regular (dimension of eigenspaces is at most 2). Corollaries include results of Gerstenhaber and Neubauer-Sethuraman on bounds for the dimension of the algebra generated by A1A2, …, Ak. Even when the ASD property fails, our techniques can produce a good bound on the dimension of this subalgebra. For example, we establish for commuting matrices A1, …, Ak when one of them is 2-regular. This bound is sharp. One offshoot of our work is the introduction of a new canonical form, the H-form, for matrices over an algebraically closed field. The H-form of a matrix is a sparse “Jordan like” upper triangular matrix which allows us to assume that any commuting matrices are also upper triangular. (The Jordan form itself does not accommodate this.)  相似文献   

11.
For a given nonderogatory matrix A, formulas are given for functions of A in terms of Krylov matrices of A. Relations between the coefficients of a polynomial of A and the generating vector of a Krylov matrix of A are provided. With the formulas, linear transformations between Krylov matrices and functions of A are introduced, and associated algebraic properties are derived. Hessenberg reduction forms are revisited equipped with appropriate inner products and related properties and matrix factorizations are given.  相似文献   

12.
In this paper, we modify Eschenbach’s algorithm for constructing sign idempotent sign pattern matrices so that it correctly constructs all of them. We find distinct classes of sign idempotent sign pattern matrices that are signature similar to an entrywise nonnegative sign pattern matrix. Additionally, if for a sign idempotent sign pattern matrix A there exists a signature matrix S such that SAS is nonnegative, we prove such S is unique up to multiplication by -1 if the signed digraph D(A) is not disconnected.  相似文献   

13.
Let F(A) be the numerical range or the numerical radius of a square matrix A. Denote by A ° B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F(A ° B) = F(?(A) ° ?(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.  相似文献   

14.
In this paper, our main objective is to study the effect of appending/deleting a column/row on the shorted operators. It turns out that for matrices A and B for which the shorted operator S(A|B) exists, S(A1|B1) of the matrix A1=[A:a] with respect to the matrix B1=[B:b], when it exists, is obtained by appending a suitable column to S(A|B). Moreover, if S(A1|B1) exists, then S(A|B) exists and is obtained from S(A1|B1) by dropping its last column. In the process, we study the effect of appending/deleting a column/row on the space pre-order and the parallel sum of parallel summable matrices. Finally, we specialize to the case of and matrices and study the effect of bordering (by an additional column and a row) on the shorted operator. We conclude the paper with an application to Linear Models with singular dispersion structure.  相似文献   

15.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

16.
Let F be any field and let B a matrix of Fq×p. Zaballa found necessary and sufficient conditions for the existence of a matrix A=[Aij]i,j∈{1,2}F(p+q)×(p+q) with prescribed similarity class and such that A21=B. In an earlier paper [A. Borobia, R. Canogar, Constructing matrices with prescribed off-diagonal submatrix and invariant polynomials, Linear Algebra Appl. 424 (2007) 615-633] we obtained, for fields of characteristic different from 2, a finite step algorithm to construct A when it exists. In this short note we extend the algorithm to any field.  相似文献   

17.
Every square complex matrix is known to be consimilar to a real matrix. Unitary congruence is a particular type of consimilarity. We prove that a matrix AMn(C) is unitarily congruent to a real matrix if and only if A is unitarily congruent to via a symmetric unitary matrix. It is shown by an example that there exist matrices that are congruent, but not unitarily congruent, to real matrices.  相似文献   

18.
Some inequalities for the Hadamard product and the Fan product of matrices   总被引:2,自引:0,他引:2  
If A and B are nonsingular M-matrices, a sharp lower bound on the smallest eigenvalue τ(AB) for the Fan product of A and B is given, and a sharp lower bound on τ(A°B-1) for the Hadamard product of A and B-1 is derived. In addition, we also give a sharp upper bound on the spectral radius ρ(A°B) for nonnegative matrices A and B.  相似文献   

19.
Two square complex matrices A, B are said to be unitarily congruent if there is a unitary matrix U such that A = UBUT. The Youla form is a canonical form under unitary congruence. We give a simple derivation of this form using coninvariant subspaces. For the special class of conjugate-normal matrices the associated Youla form is discussed.  相似文献   

20.
We say that a matrix RCn×n is k-involutary if its minimal polynomial is xk-1 for some k?2, so Rk-1=R-1 and the eigenvalues of R are 1,ζ,ζ2,…,ζk-1, where ζ=e2πi/k. Let α,μ∈{0,1,…,k-1}. If RCm×m, ACm×n, SCn×n and R and S are k-involutory, we say that A is (R,S,μ)-symmetric if RAS-1=ζμA, and A is (R,S,α,μ)-symmetric if RAS-α=ζμA.Let L be the class of m×n(R,S,μ)-symmetric matrices or the class of m×n(R,S,α,μ)-symmetric matrices. Given XCn×t and BCm×t, we characterize the matrices A in L that minimize ‖AX-B‖ (Frobenius norm), and, given an arbitrary WCm×n, we find the unique matrix AL that minimizes both ‖AX-B‖ and ‖A-W‖. We also obtain necessary and sufficient conditions for existence of AL such that AX=B, and, assuming that the conditions are satisfied, characterize the set of all such A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号