首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Let G=(V,E) be a simple graph with vertex degrees d1,d2,…,dn. The Randi? index R(G) is equal to the sum over all edges (i,j)∈E of weights . We prove several conjectures, obtained by the system AutoGraphiX, relating R(G) and the chromatic number χ(G). The main result is χ(G)≤2R(G). To prove it, we also show that if vV is a vertex of minimum degree δ of G, Gv the graph obtained from G by deleting v and all incident edges, and Δ the maximum degree of G, then .  相似文献   

2.
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovi? et al. have given the following conjecture involving the second largest signless Laplacian eigenvalue (q2) and the index (λ1) of graph G (see also Aouchiche and Hansen [1]):
  相似文献   

3.
4.
Let G be a connected graph, suppose that v is a vertex of G, and denote the subgraph formed from G by deleting vertex v by G?v. Denote the algebraic connectivities of G and G?v by α(G) and α(G?v), respectively. In this paper, we consider the functions ?(v)=α(G)−α(G?v) and , provide attainable upper and lower bounds on both functions, and characterise the equality cases in those bounds. The function κ yields a measure of vertex centrality, and we apply that measure to analyse certain graphs arising from food webs.  相似文献   

5.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. It is known that connected graphs G that maximize the signless Laplacian spectral radius ρ(Q(G)) over all connected graphs with given numbers of vertices and edges are (degree) maximal. For a maximal graph G with n vertices and r distinct vertex degrees δr>δr-1>?>δ1, it is proved that ρ(Q(G))<ρ(Q(H)) for some maximal graph H with n+1 (respectively, n) vertices and the same number of edges as G if either G has precisely two dominating vertices or there exists an integer such that δi+δr+1-i?n+1 (respectively, δi+δr+1-i?δl+δr-l+1). Graphs that maximize ρ(Q(G)) over the class of graphs with m edges and m-k vertices, for k=0,1,2,3, are completely determined.  相似文献   

6.
Toru Kojima 《Discrete Mathematics》2008,308(17):3770-3781
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(u)-f(v)|:uvE(G)} taken over all injective integer numberings f of G. The corona of two graphs G and H, written as G°H, is the graph obtained by taking one copy of G and |V(G)| copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H. In this paper, we investigate the bandwidth of the corona of two graphs. For a graph G, we denote the connectivity of G by κ(G). Let G be a graph on n vertices with B(G)=κ(G)=k?2 and let H be a graph of order m. Let c,p and q be three integers satisfying 1?c?k-1 and . We define hi=(2k-1)m+(k-i)(⌊(2k-1)m/i⌋+1)+1 for i=1,2,…,k and b=max{⌈(n(m+1)-qm-1)/(p+2)⌉,⌈(n(m+1)+k-q-1)/(p+3)⌉}. Then, among other results, we prove that
  相似文献   

7.
In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3-(d-3)x2-(3d-2)x-2=0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if the second largest eigenvalue of G is less than , then G is 3-edge-connected.  相似文献   

8.
Let G be a simple graph. Let λ1(G) and μ1(G) denote the largest eigenvalue of the adjacency matrix and the Laplacian matrix of G, respectively. Let Δ denote the largest vertex degree. If G has just one cycle, then
  相似文献   

9.
Let G be a graph. The connectivity of G, κ(G), is the maximum integer k such that there exists a k-container between any two different vertices. A k-container of G between u and v, Ck(u,v), is a set of k-internally-disjoint paths between u and v. A spanning container is a container that spans V(G). A graph G is k-connected if there exists a spanning k-container between any two different vertices. The spanning connectivity of G, κ(G), is the maximum integer k such that G is w-connected for 1≤wk if G is 1-connected.Let x be a vertex in G and let U={y1,y2,…,yk} be a subset of V(G) where x is not in U. A spanningk−(x,U)-fan, Fk(x,U), is a set of internally-disjoint paths {P1,P2,…,Pk} such that Pi is a path connecting x to yi for 1≤ik and . A graph G is k-fan-connected (or -connected) if there exists a spanning Fk(x,U)-fan for every choice of x and U with |U|=k and xU. The spanning fan-connectivity of a graph G, , is defined as the largest integer k such that G is -connected for 1≤wk if G is -connected.In this paper, some relationship between κ(G), κ(G), and are discussed. Moreover, some sufficient conditions for a graph to be -connected are presented. Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss some sufficient conditions for a graph to be k-pipeline-connected.  相似文献   

10.
11.
Let G=(V(G),E(G)) be a unicyclic simple undirected graph with largest vertex degree Δ. Let Cr be the unique cycle of G. The graph G-E(Cr) is a forest of r rooted trees T1,T2,…,Tr with root vertices v1,v2,…,vr, respectively. Let
  相似文献   

12.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

13.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

14.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, we give some graft transformations that decrease and increase ?(G) and prove that the graph (obtained from the star Sn on n (n is not equal to 4, 5) vertices by adding an edge connecting two pendent vertices) has minimal distance spectral radius among unicyclic graphs on n vertices; while (obtained from a triangle K3 by attaching pendent path Pn−3 to one of its vertices) has maximal distance spectral radius among unicyclic graphs on n vertices.  相似文献   

15.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

16.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

17.
Spectral radius and Hamiltonicity of graphs   总被引:1,自引:0,他引:1  
Let G be a graph of order n and μ(G) be the largest eigenvalue of its adjacency matrix. Let be the complement of G.Write Kn-1+v for the complete graph on n-1 vertices together with an isolated vertex, and Kn-1+e for the complete graph on n-1 vertices with a pendent edge.We show that:If μ(G)?n-2, then G contains a Hamiltonian path unless G=Kn-1+v; if strict inequality holds, then G contains a Hamiltonian cycle unless G=Kn-1+e.If , then G contains a Hamiltonian path unless G=Kn-1+v.If , then G contains a Hamiltonian cycle unless G=Kn-1+e.  相似文献   

18.
Inverse degree and edge-connectivity   总被引:2,自引:0,他引:2  
Let G be a connected graph with vertex set V(G), order n=|V(G)|, minimum degree δ and edge-connectivity λ. Define the inverse degree of G as , where d(v) denotes the degree of the vertex v. We show that if
  相似文献   

19.
20.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号