首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assume that a sequence of samples of a filtered version of a function in a shift-invariant space is given. This paper deals with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. This is done in the light of the generalized sampling theory by using the oversampling technique. A necessary and sufficient condition is given in terms of the Smith canonical form of a polynomial matrix. Finally, we prove that the aforesaid oversampled formulas provide nice approximation schemes with respect to the uniform norm.  相似文献   

2.
Gabor frames, unimodularity, and window decay   总被引:4,自引:0,他引:4  
We study time-continuous Gabor frame generating window functions g satisfying decay properties in time and/or frequency with particular emphasis on rational time-frequency lattices. Specifically, we show under what conditions these decay properties of g are inherited by its minimal dual γ0 and by generalized duals γ. We consider compactly supported, exponentially decaying, and faster than exponentially decaying (i.e., decay like |g(t)|≤Ce−α|t| 1/α for some 1/2≤α<1) window functions. Particularly, we find that g and γ0 have better than exponential decay in both domains if and only if the associated Zibulski-Zeevi matrix is unimodular, i.e., its determinant is a constant. In the case of integer oversampling, unimodularity of the Zibulski-Zeevi matrix is equivalent to tightness of the underlying Gabor frame. For arbitrary oversampling, we furthermore consider tight Gabor frames canonically associated to window functions g satisfying certain decay properties. Here, we show under what conditions and to what extent the canonically associated tight frame inherits decay properties of g. Our proofs rely on the Zak transform, on the Zibulski-Zeevi representation of the Gabor frame operator, on a result by Jaffard, on a functional calculus for Gabor frame operators, on results from the theory of entire functions, and on the theory of polynomial matrices.  相似文献   

3.
Under the appropriate definition of sampling density Dϕ, a function f that belongs to a shift invariant space can be reconstructed in a stable way from its non-uniform samples only if Dϕ≥1. This result is similar to Landau's result for the Paley-Wiener space B 1/2 . If the shift invariant space consists of polynomial splines, then we show that Dϕ<1 is sufficient for the stable reconstruction of a function f from its samples, a result similar to Beurling's special case B 1/2 .  相似文献   

4.
Spectra and pseudospectra of matrix polynomials are of interest in geometric intersection problems, vibration problems, and analysis of dynamical systems. In this note we consider the effect of the choice of polynomial basis on the pseudospectrum and on the conditioning of the spectrum of regular matrix polynomials. In particular, we consider the direct use of the Lagrange basis on distinct interpolation nodes, and give a geometric characterization of “good” nodes. We also give some tools for computation of roots at infinity via a new, natural, reversal. The principal achievement of the paper is to connect pseudospectra to the well-established theory of Lebesgue functions and Lebesgue constants, by separating the influence of the scalar basis from the natural scale of the matrix polynomial, which allows many results from interpolation theory to be applied. This work was partially funded by the Natural Sciences and Engineering Research Council of Canada, and by the MITACS Network of Centres of Excellence.  相似文献   

5.
This paper is concerned with the problem of the best approximation for a given matrix pencil under a given spectral constraint and a submatrix pencil constraint. Such a problem arises in structural dynamic model updating. By using the Moore–Penrose generalized inverse and the singular value decomposition (SVD) matrices, the solvability condition and the expression for the solution of the problem are presented. A numerical algorithm for solving the problem is developed.  相似文献   

6.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   

7.
In this paper, we shall follow a companion matrix approach to study the relationship between zeros of a wide range of pairs of complex polynomials, for example, a polynomial and its polar derivative or Sz.-Nagy’s generalized derivative. We shall introduce some new companion matrices and obtain a generalization of the Weinstein-Aronszajn Formula which will then be used to prove some inequalities similar to Sendov conjecture and Schoenberg conjecture and to study the distribution of equilibrium points of logarithmic potentials for finitely many discrete charges. Our method can also be used to produce, in an easy and systematic way, a lot of identities relating the sums of powers of zeros of a polynomial to that of the other polynomial.  相似文献   

8.
In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae.  相似文献   

9.
In this paper we give a partial solution to the challenge problem posed by Loiseau et al. in [J. Loiseau, S. Mondié, I. Zaballa, P. Zagalak, Assigning the Kronecker invariants of a matrix pencil by row or column completion, Linear Algebra Appl. 278 (1998) 327-336], i.e. we assign the Kronecker invariants of a matrix pencil obtained by row or column completion. We have solved this problem over arbitrary fields.  相似文献   

10.
In this paper, we introduce the generalized Leibniz functional matrices and study some algebraic properties of such matrices. To demonstrate applications of these properties, we derive several novel factorization forms of some well-known matrices, such as the complete symmetric polynomial matrix and the elementary symmetric polynomial matrix. In addition, by applying factorizations of the generalized Leibniz functional matrices, we redevelop the known results of factorizations of Stirling matrices of the first and second kind and the generalized Pascal matrix.  相似文献   

11.
Let L be an Hermitian linear functional defined on the linear space of Laurent polynomials. It is very well known that the Gram matrix of the associated bilinear functional in the linear space of polynomials is a Toeplitz matrix. In this contribution we analyze some linear spectral transforms of L such that the corresponding Toeplitz matrix is the result of the addition of a constant in a subdiagonal of the initial Toeplitz matrix. We focus our attention in the analysis of the quasi-definite character of the perturbed linear functional as well as in the explicit expressions of the new monic orthogonal polynomial sequence in terms of the first one.  相似文献   

12.
For an abelian group Γ, a formula to compute the characteristic polynomial of a Γ-graph has been obtained by Lee and Kim [Characteristic polynomials of graphs having a semi-free action, Linear algebra Appl. 307 (2005) 35-46]. As a continuation of this work, we give a computational formula for generalized characteristic polynomial of a Γ-graph when Γ is a finite group. Moreover, after showing that the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, we compute the reciprocals of the Bartholdi zeta functions of wheels and complete bipartite graphs as an application of our formula.  相似文献   

13.
The aim of this paper is the shape restoration of a plane object from measurements of its diffracted field at a discrete and finite set of points. The plane sampling lattice is supposed: i) rectangular; ii)periodic.

The problem is approached as an interpolation one. A numerical algorithm for practical reconstructions is presented. A-priori limitations on the perimeter of the object and conditions on the samples lead to a-priori bounds able to estimate the precision of the reconstruction.  相似文献   

14.
The topic of the paper is spectral factorization of rectangular and possibly non-full-rank polynomial matrices. To each polynomial matrix we associate a matrix pencil by direct assignment of the coefficients. The associated matrix pencil has its finite generalized eigenvalues equal to the zeros of the polynomial matrix. The matrix dimensions of the pencil we obtain by solving an integer linear programming (ILP) minimization problem. Then by extracting a deflating subspace of the pencil we come to the required spectral factorization. We apply the algorithm to most general-case of inner–outer factorization, regardless continuous or discrete time case, and to finding the greatest common divisor of polynomial matrices.  相似文献   

15.
There is a well-established instability index theory for linear and quadratic matrix polynomials for which the coefficient matrices are Hermitian and skew-Hermitian. This theory relates the number of negative directions for the matrix coefficients which are Hermitian to the total number of unstable eigenvalues for the polynomial. Herein we extend the theory to ?-even matrix polynomials of any finite degree. In particular, unlike previously known cases we show that the instability index depends upon the size of the matrices when the degree of the polynomial is greater than two. We also consider Hermitian matrix polynomials, and derive an index which counts the number of eigenvalues with nonpositive imaginary part. The results are refined if we consider the Hermitian matrix polynomial to be a perturbation of a ?-even polynomials; however, this refinement requires additional assumptions on the matrix coefficients.  相似文献   

16.
We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diagonal reduction formula via the generalized confluent Vandermonde matrix similar to that of classical Bezoutian is presented. The method used is based on polynomial module and operator representation.  相似文献   

17.
This paper is concerned with the problem of reconstructing an infinite-dimensional signal from a limited number of linear measurements. In particular, we show that for binary measurements (modelled with Walsh functions and Hadamard matrices) and wavelet reconstruction the stable sampling rate is linear. This implies that binary measurements are as efficient as Fourier samples when using wavelets as the reconstruction space. Powerful techniques for reconstructions include generalized sampling and its compressed versions, as well as recent methods based on data assimilation. Common to these methods is that the reconstruction quality depends highly on the subspace angle between the sampling and the reconstruction space, which is dictated by the stable sampling rate. As a result of the theory provided in this paper, these methods can now easily use binary measurements and wavelet reconstruction bases.  相似文献   

18.
The main theme of this paper is the discussion of a family of extremal solutions of a finite moment problem for rational matrix functions in the nondegenerate case. We will point out that each member of this family is extremal in several directions. Thereby, the investigations below continue the studies in Fritzsche et al. (in press) [1]. In doing so, an application of the theory of orthogonal rational matrix functions with respect to a nonnegative Hermitian matrix Borel measure on the unit circle is used to get some insights into the structure of the extremal solutions in question. In particular, we explain characterizations of these solutions in the whole solution set in terms of orthogonal rational matrix functions. We will also show that the associated Riesz-Herglotz transform of such a particular solution admits specific representations, where orthogonal rational matrix functions are involved.  相似文献   

19.
Matrix orthogonal Laurent polynomials in the unit circle and the theory of Toda-like integrable systems are connected using the Gauss–Borel factorization of two, left and a right, Cantero–Morales–Velázquez block moment matrices, which are constructed using a quasi-definite matrix measure. A block Gauss–Borel factorization problem of these moment matrices leads to two sets of biorthogonal matrix orthogonal Laurent polynomials and matrix Szeg? polynomials, which can be expressed in terms of Schur complements of bordered truncations of the block moment matrix. The corresponding block extension of the Christoffel–Darboux theory is derived. Deformations of the quasi-definite matrix measure leading to integrable systems of Toda type are studied. The integrable theory is given in this matrix scenario; wave and adjoint wave functions, Lax and Zakharov–Shabat equations, bilinear equations and discrete flows — connected with Darboux transformations. We generalize the integrable flows of the Cafasso's matrix extension of the Toeplitz lattice for the Verblunsky coefficients of Szeg? polynomials. An analysis of the Miwa shifts allows for the finding of interesting connections between Christoffel–Darboux kernels and Miwa shifts of the matrix orthogonal Laurent polynomials.  相似文献   

20.
Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. Unfortunately, several desirable properties are not available with compactly supported orthogonal wavelets, e.g., symmetry and piecewise polynomial structure. Presently, multiwavelets seem to offer a satisfactory alternative. The study of multiwavelets involves the consideration of the properties of several (simultaneously) refinable functions. In Section 2 of this article, we characterize stability and linear independence of the shifts of a finite refinable function set in terms of the refinement mask. Several illustrative examples are provided. The characterizations given in Section 2 actually require that the refinable functions be minimal in some sense. This notion of minimality is made clear in Section 3, where we provide sufficient conditions on the mask to ensure minimality. The conditions are shown to be necessary also under further assumptions on the refinement mask. An example is provided illustrating how the software package MAPLE can be used to investigate at least the case of two simultaneously refinable functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号