首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The sound implementation of the boundary element method (BEM) is highly dependent on an accurate numerical integration of singular integrals. In this paper, a set of various types of singular domain integrals with three-dimensional boundary element discretization is evaluated based on a transformation integration technique. In the BEM, the integration domain (body surface) needs to be discretized into small elements. For each element, the integral I(xpx) is calculated on the domain dS. Several types of integrals IBα and ICα are numerically and analytically computed and compared with the relative error. The method is extended to evaluate singular integrals which arise in the solution of the three-dimensional Laplace’s equation. An example of the elliptic hydrofoil is performed to study the physical accuracy. The results obtained using both numerical and analytical methods are shown in good agreement with the experimental data.  相似文献   

2.
A three-dimensional unilateral contact problem for thin viscoelastic layers bonded to rigid substrates shaped like elliptic paraboloids is considered. Two cases are studied: (a) Poisson’s ratios of the layer materials are not very close to 0.5 and (b) the layer materials are incompressible with Poisson’s ratio of 0.5. Poisson’s ratios are assumed to be time independent. In the present paper we derive the general solutions to the problems of elliptical contact between thin compressible or incompressible layers of arbitrary viscoelastic materials. The approach is based on the analytical method developed by the authors for the elliptical contact of thin biphasic cartilage layers. The obtained analytical solution is valid for monotonically increasing loading conditions.  相似文献   

3.
This paper is presented as a way to model transient heat conduction in a 3-D axisymmetric case where large rates of heat fluxes are applied on the surfaces as done in the case of laser processing. This would result in large temperature gradients in a small area irradiated by the laser on the incident surface that could also reach melting and subsequent vaporization. BEM can handle large fluxes very easily and it also can be formulated if needed to incorporate the moving boundary problem in a unique manner while on the other hand FDM is a fast and efficient method. For these reasons a coupled BEM–FDM method is formulated to simulate the heat conduction process. In the BEM method linear elements for the boundary and quadratic elements for the domain were used. The integrals in BEM were integrated in time using the asymptotic expansion for the modified Bessel functions in the Green’s function. To further improve the accuracy, special techniques were employed in the spatial integration. As for the FDM formulation, a flux conservation scheme with a 4th order formula for the fluxes was used. The FDM and BEM were coupled at the interface by the temperature from the FDM formulation being imposed on the BEM and the flux from the BEM being utilized by the FDM elements near to the interface. To advance in time, the Crank–Nicholson scheme was used on the FDM directly and due to coupling indirectly on the BEM. The relative errors for the simulation of constant and variable flux cases demonstrate the successful nature of the numerical model.  相似文献   

4.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated.  相似文献   

5.
On employing isoparametric, piecewise linear shape functions over a flat triangle, exact formulae are derived for all surface potentials involved in the numerical treatment of three-dimensional singular and hyper-singular boundary integral equations in linear elasticity. These formulae are valid for an arbitrary source point in space and are represented as analytical expressions along the edges of the integration triangle. They can be employed to solve integral equations defined on triangulated surfaces via a collocation method or may be utilized as analytical expressions for the inner integrals in a Galerkin technique. A numerical example involving a unit triangle and a source point located at various distances above it, as well as sample problems solved by a collocation boundary element method for the Lamé equation are included to validate the proposed formulae.  相似文献   

6.
The discrete Galerkin and discrete iterated Galerkin methodsarise when the integrals required in the Galerkin and iteratedGalerkin methods are calculated using numerical integration.In this paper, prolongation and restriction operators are usedto give an error analysis for these two discrete Galerkin methods.From this analysis, we can then give conditions on the quadratureerrors, under which the two discrete Galerkin solutions havethe same order of convergence as their exact counterparts.  相似文献   

7.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

8.
A recently proposed method for the derivation of exact analytical integral formulae for the zeros of analytic functions (based on the simple discontinuity problem for a sectionally analytic function along the real axis) is applied here to the case of polynomials. The peculiarity of the present application is that the integrals appearing in the closed-form formulae for the sought zeros are interpreted as Cauchy-type principal-value integrals or even as finite-part integrals. The case of the quintic equation with real coefficients is considered in some detail, and it is shown that the roots of this equation can always be obtained in closed form. Numerical results for this equation are also presented. Equations of higher degree can also be solved in closed form under appropriate conditions.  相似文献   

9.
This paper is concerned with the effect of numerical integration applied to the discontinuous Galerkin finite element discretization of nonlinear convection‐diffusion problems in 2D. In the space semidiscretization the volume and line integrals are evaluated by numerical quadratures. Our goal is to estimate the error caused by the numerical integration and to show what numerical quadratures guarantee that the accuracy of the method with exact integration is preserved. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

10.
A new semi-analytical integration scheme is proposed for evaluation of logarithmically singular and/or nearly singular integrals occurring in 2D BEM formulations. Extensive numerical experiments are performed to study the accuracy by the proposed and other schemes of numerical integration. The accuracy of the numerical integration is almost exact even for curvilinear elements and the accuracy of numerical computation is determined by the accuracy of the approximation of the boundary density and geometry.  相似文献   

11.
Vibration analysis of rectangular plates coupled with fluid   总被引:1,自引:0,他引:1  
The approach developed in this paper applies to vibration analysis of rectangular plates coupled with fluid. This case is representative of certain key components of complex structures used in industries such as aerospace, nuclear and naval. The plates can be totally submerged in fluid or floating on its free surface. The mathematical model for the structure is developed using a combination of the finite element method and Sanders’ shell theory. The in-plane and out-of-plane displacement components are modelled using bilinear polynomials and exponential functions, respectively. The mass and stiffness matrices are then determined by exact analytical integration. The velocity potential and Bernoulli’s equation are adopted to express the fluid pressure acting on the structure. The product of the pressure expression and the developed structural shape function is integrated over the structure-fluid interface to assess the virtual added mass due to the fluid. Variation of fluid level is considered in the calculation of the natural frequencies. The results are in close agreement with both experimental results and theoretical results using other analytical approaches.  相似文献   

12.
By incorporating the Legendre multiwavelet into the discontinuous Galerkin (DG) method, this paper presents a novel approach for solving Poisson’s equation with Dirichlet boundary, which is known as the discontinuous Legendre multiwavelet element (DLWE) method, derive an adaptive algorithm for the method, and estimate the approximating error of its numerical fluxes. One striking advantage of our method is that the differential operator, boundary conditions and numerical fluxes involved in the elementwise computation can be done with lower time cost. Numerical experiments demonstrate the validity of this method. Furthermore, this paper generalizes the DLWE method to the general elliptic equations defined on a bounded domain and describes the possibilities of constructing optimal adaptive algorithm. The proposed method and its generalizations are also applicable to some other kinds of partial differential equations.  相似文献   

13.
In this paper, a computational scheme is proposed to estimate the solution of one- and two-dimensional Fredholm-Hammerstein integral equations of the second kind. The method approximates the solution using the discrete Galerkin method based on the moving least squares (MLS) approach as a locally weighted least squares polynomial fitting. The discrete Galerkin technique for integral equations results from the numerical integration of all integrals in the system corresponding to the Galerkin method. Since the proposed method is constructed on a set of scattered points, it does not require any background meshes and so we can call it as the meshless local discrete Galerkin method. The implication of the scheme for solving two-dimensional integral equations is independent of the geometry of the domain. The new method is simple, efficient and more flexible for most classes of nonlinear integral equations. The error analysis of the method is provided. The convergence accuracy of the new technique is tested over several Hammerstein integral equations and obtained results confirm the theoretical error estimates.  相似文献   

14.
Oscillating phenomena in non-linear mechanical systems with two degrees of freedom described by coupled Duffing equations are studied from the computational view point. Galerkin approximations of order 7 are computed with a very high precision on an electronic computer by applying a numerical approximation method of Urabe for the Galerkin method. The existence of an exact isolated periodic solution in a small neighborhood of these Galerkin approximations is proved and the error bound of these Galerkin approximations is given. The stability of Stierel's integration method in combination with Galerkin approximations is shown.  相似文献   

15.
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017  相似文献   

16.
关于薄板的无网格局部边界积分方程方法中的友解   总被引:3,自引:1,他引:2  
无网格局部边界积分方程方法是最近发展起来的一种新的数值方法,这种方法综合了伽辽金有限元、边界元和无单元伽辽金法的优点,是一种具有广阔应用前景的、真正的无网格方法.把无网格局部边界积分方程方法应用于求解薄板问题,给出了薄板无网格局部边界积分方程方法所需要的友解及其全部公式.  相似文献   

17.
A numerical solution of the generalized Burger’s–Huxley equation, based on collocation method using Radial basis functions (RBFs), called Kansa’s approach is presented. The numerical results are compared with the exact solution, Adomian decomposition method (ADM) and Variational iteration method (VIM). Highly accurate and efficient results are obtained by RBFs method. Excellent agreement with the exact solution is observed while better (or same) accuracy is obtained than other numerical schemes cited in this work.  相似文献   

18.
A boundary element method (BEM) for the analysis of two- and three-dimensional uncoupled transient thermo-elastic problems involving time- and space-dependent heat sources is presented. The domain integrals are efficiently treated using the Cartesian transformation and the radial integration methods without considering any internal cells. Similar to the dual reciprocity method (DRM), some internal points without any connectivity are considered; however, in contrast to the DRM, any arbitrary mesh-free interpolation method can be used in the present formulation. There is no need to find any particular solutions and the shape functions in the mesh-free interpolation method can be arbitrary and sufficiently complicated. Unlike the DRM, the generated system of equations contains the unknowns only on the boundary. After finding the primary unknowns on the boundary, the temperature, displacement, and stress components at all internal points can directly be found without solving any system of equations. Three examples with different forms of heat sources are presented to demonstrate the efficiency and accuracy of the proposed method. Although the proposed BEM is mathematically more complicated than domain methods, such as the finite element method (FEM), it is more efficient from a modelling viewpoint since only the surface mesh has to be generated in the presented method.  相似文献   

19.
An analytical model based on Green’s function method is developed to analyze the temperature distribution and heated regions in a material irradiated by a high-energy laser beam. The model is multi-dimensional, transient and incorporates different types of beam characteristics and boundary conditions. The multi-dimensional integration formulas in the Green’s function solution equation are evaluated using an adaptive numerical integration algorithm. A parametric study is conducted to show the effect of various laser beam parameters and material properties on the laser heating process.  相似文献   

20.
This note shows that fur a BVP of Poisson‘s equation with Qm(u,v) as its source function, a direct evaluation of some integrals yields the same exact results as obtained by similarity analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号