首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The catalytic property of propylene dimerization by several nickel (II), cobalt (II) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the nature of precursors in terms of ligand backbone and metal center were investigated. The results indicated that precursor I (N,-N-dimethyl-2-(diphenylphosphino)aniline nickel (II) dichloride)exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3A12Cl3, whereas low productivity by its cobalt analogues was observed under identical reaction conditions.  相似文献   

2.
The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the nature of precursors in terms of ligand backbone and metal center were investigated. The results indicated that precursor I (N,N-dimethyl-2-(diphenylphosphino)aniline nickel (Ⅱ) dichloride) exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3Al2Cl3, whereas low productivity by its cobalt analogues was observed under identical reaction conditions.  相似文献   

3.
Zhou  Li  Shen  Ling  Huang  Jian  Liu  Na  Zhu  Yuan-Yuan  Wu  Zong-Quan 《高分子科学》2018,36(2):163-170
Three novel enantiopure phenyl isocyanide monomers with BH3-protected phosphine functional group were designed and synthesized.Polymerization of these monomers using a alkyne-Pd(Ⅱ) complex as a catalyst led to the formation of respective helical polyisocyanides in high yields with controlled molecular weights (Mns) and narrow molecular weight distributions (Mw/Mns).Removing the protecting BH3 groups afforded helical poly(phenyl isocyanide)s bearing phosphine pendants.Thanks to the chiral induction of monomer,the isolated helical polyisocyanides showed high optical activity,as revealed by circular dichroism (CD) and absorption spectroscopies and polarimetry.The helical structures of these polymers were quite stable in various organic solvents with different polarities and in a wide temperature range.Moreover,these helical polymers could be used as organocatalysts and showed good performance in enantioselective cross Rauhut-Currier reaction.The enantiomeric excess (ee) values of the isolated products of cross Rauhut-Currier reaction could be up to 90%.The polymer organocatalysts could be easily recovered from the reaction mixtures and reused at least five times in the reaction without significant loss of their enantioselectivities and catalytic activities.  相似文献   

4.
Cycloaddition of CO_2 with aziridines is an important reaction to obtain high-value products.Porous MOFs can catalyze this reaction,but co-catalysts are still necessary to improve the catalytic performance.Such a reaction catalyzed by MOFs-based materials without co-catalyst has not been reported hitherto.Herein,a porous and stable three-dimensional(3 D) framework{[Ni(DCTP)]·6.5 DMF}_n(1) with a large Langmuir surface area of 3,789 m~2/g was synthesized,which displayed high I_2 adsorption ability up to 731.0 mg/g and could release it reversibly.Additionally,it exhibited a high CO_2 adsorption capacity of104.0 cm~3/g at 273 K.The investigation results revealed 1 could effectively catalyze the cycloaddition of CO_2 and aziridines in the absence of additional co-catalyst,and it could maintain the catalytic activity after five cycles.Furthermore,1 also exhibited high catalytic activity for the gram-scale experiment.Importantly,it is the first MOF material as a heterogeneous catalyst for the conversion of CO_2 and aziridines without co-catalyst.  相似文献   

5.
The effects of the available zoon above the catalyst bed on the performance of the catalyst were investigated. It has been suggested that propylene is an intermediate species in the reaction of propane to acrolein, and a two-step reaction scheme is proposed, the first step is oxidative dehydrogenation of propane to propylene in the gas phase then followed by the second step, the selective oxidation of propylene to acrolein on the surface of the catalyst. The performance of the catalyst depends on both the oxidative dehydrogenation of propane to propylene in the gas phase and the selective oxidation of propylene to acrolein on the catalyst surface. The thermal cracking, homogeneous oxidative dehydrogenation and heterogeneous catalytic dehydrogenation of propane as well as the selective catalytic oxidation of propane to acrolein over BiMoO based mixed oxides catalysts were studied. Under the optimum reaction conditions of propane dehydrogenation and selective oxidation of propylene, the selectivity and the yield of acrolein approached to 45mol% and 14mol%, respectively under about 30mol% propane conversion.  相似文献   

6.
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.  相似文献   

7.
A novel nickel(II)complex[Ni(H2 tpda)(NCS)2(CH3 OH)]was synthesized by using tripyridyldiamine as ligand and Ni(NCS)2 as starting materials,and characterized by a variety of techniques including single-crystal X-ray diffraction,IR spectroscopy and TG-DSC.The single-crystal structure reveals that the complex exhibits as a neutral molecule and that the central atom Ni(II)is octahedrally coordinated by an H2 tpda,two NCS-ions and a ligand molecule CH3 OH.The 3 D supramolecular network is formed through hydrogen bonds andπ-πinteractions.The complex can catalyze the addition reaction of carbon dioxide and propylene oxide.  相似文献   

8.
The ligand free coupling reaction of phenyl urea with different functionalized aryl halides in the presence of air stable Cu2O and t-BuOK as a base gives symmetrical and unsymmetrical diarylureas in relatively high yields.This method is milder than the palladium catalyzed arylation and avoids the use of toxic phosphine ligand.  相似文献   

9.
The hydrogenation of toluidines catalyzed by silica-supported carboxymethyl cellulose platinum complex forms methylcyclohexlamines in high yields, such as m-toluidine to 3-methylcyclohexylamine, o-toluidine to 2-methylcyclohexylamine, and p-toluidine to 4-methylcyclohexylamine in 97%, 96. 7% and 98. 2% yields,respectively, at 30℃ and under atmospheric hydrogen pressure. The yields were remarkably affected by the Pt content in the complex, the kind of solvent and the reaction temperature. The catalyst was very stable and could be reused several times without remarkable change in the catalytic activity.  相似文献   

10.
Zhuo  Chun-Wei  Qin  Yu-Sheng  Wang  Xian-Hong  Wang  Fo-Song 《高分子科学》2018,36(2):252-260
Aluminum porphyrin complexes are heavy-metal-free and soil-tolerant green catalysts for the copolymerization of CO2 and propylene oxide (PO),but they suffer from relatively poor poly(propylene carbonate) (PPC) selectivity.Herein,steric hindrance porphyrin ligand was used to enhance the PPC selectivity.Typically,a bulky anthracene-like group was incorporated into the porphyrin ring to form 5,10,15,20-tetra(1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl)porphyrin,the aluminum porphyrin complex with this ligand,in combination with bis(triphenylphosphine)iminium chloride as a co-catalyst,produced completely alternate PPC.Additionally,the obtained PPC showed high regioselectivity,with a head-to-tail linkage content (HT) of 92%.Therefore,we demonstrated that introduction of bulky steric ligand into the porphyrin ring could reduce the propylene oxide homopolymerization activity leading to excellent PPC selectivity,and improve regioselectivity for the PO ring-opening during the copolymerization.  相似文献   

11.
Brominated and chloromethylated styrene–divinylbenzene resins were used for the synthesis of polymer‐bound dithio‐β‐diketones, obtained by anchoring the chelate ligand through the central position. The heterogenized dithio‐β‐diketone ligand was subsequently reacted either as sodium salt with a Ni(II) phosphino derivative or directly with a Ni(0) complex in the presence of a free phosphine and activated in situ with an aluminum co‐catalyst for the selective dimerization of propylene to 2,3‐dimethylbutenes. The hetetogenized catalysts so obtained showed, particulary when prepared starting from chloromethylated styrene/divinylbenzene resins, very high activity and selectivity towards 2,3‐dimethylbutenes. Moreover, the above catalysts, at least under the adopted reaction conditions, did not display any appreciable metal leaching during the catalytic cycle, thus working as really heterogeneous systems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Addition of PR3 (R=Ph or OPh) to [Cu(η2‐Me6C6)2][PF6] results in the formation of [(η6‐Me6C6)Cu(PR3)][PF6], the first copper–arene complexes to feature an unsupported η6 arene interaction. A DFT analysis reveals that the preference for the η6 binding mode is enforced by the steric clash between the methyl groups of the arene ligand and the phenyl rings of the phosphine co‐ligand.  相似文献   

13.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

14.
The synthesis and characterization of the new complex [Ni(ImiPr)22‐P≡C‐tBu)] ( 1 ) is reported. Compound 1 represents the first structurally characterized example of a mononuclear nickel(0) complex with a side on coordinated phophaalkyne ligand.  相似文献   

15.
The reaction of (μ‐Cl)2Ni2(NHC)2 (NHC=1,3‐bis(2,6‐diisopropylphenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene (IPr) or 1,3‐bis(2,6‐diisopropylphenyl)imidazolidin‐2‐ylidene (SIPr)) with either one equivalent of sodium cyclopentadienyl (NaCp) or lithium indenyl (LiInd) results in the formation of diamagnetic NHC supported NiI dimers of the form (μ‐Cp)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 1 a ) or SIPr ( 1 b ); Cp=C5H5) or (μ‐Ind)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 2 a ) or SIPr ( 2 b ); Ind=C7H9), which contain bridging Cp and indenyl ligands. The corresponding reaction between two equivalents of NaCp or LiInd and (μ‐Cl)2Ni2(NHC)2 (NHC=IPr or SIPr) generates unusual 17 valence electron NiI monomers of the form (η5‐Cp)Ni(NHC) (NHC=IPr ( 3 a ) or SIPr ( 3 b )) or (η5‐Ind)Ni(NHC) (NHC=IPr ( 4 a ) or SIPr ( 4 b )), which have nonlinear geometries. A combination of DFT calculations and NBO analysis suggests that the NiI monomers are more strongly stabilized by the Cp ligand than by the indenyl ligand, which is consistent with experimental results. These calculations also show that the monomers have a lone unpaired‐single‐electron in their valence shell, which is the reason for the nonlinear structures. At room temperature the Cp bridged dimer (μ‐Cp)(μ‐Cl)Ni2(NHC)2 undergoes homolytic cleavage of the Ni?Ni bond and is in equilibrium with (η5‐Cp)Ni(NHC) and (μ‐Cl)2Ni2(NHC)2. There is no evidence that this equilibrium occurs for (μ‐Ind)(μ‐Cl)Ni2(NHC)2. DFT calculations suggest that a thermally accessible triplet state facilitates the homolytic dissociation of the Cp bridged dimers, whereas for bridging indenyl species this excited triplet state is significantly higher in energy. In stoichiometric reactions, the NiI monomers (η5‐Cp)Ni(NHC) or (η5‐Ind)Ni(NHC) undergo both oxidative and reductive processes with mild reagents. Furthermore, they are rare examples of active NiI precatalysts for the Suzuki–Miyaura reaction. Complexes 1 a , 2 b , 3 a , 4 a and 4 b have been characterized by X‐ray crystallography.  相似文献   

16.
The C−F bond activation of pentafluoropyridine and 2,3,5,6-tetrafluoropyridine at [Ni(cod)2] (cod=1,5-cyclooctadiene) in the presence of the phosphine PPh2(Ind) (Ind=3-methyl-2-indolyl) led to the formation of the nickel(II) fluorido bis(phosphine) complexes trans-[Ni(F)(2-C5NF4){PPh2(Ind)}2] and trans-[Ni(F)(2-C5HNF3){PPh2(Ind)}2]. The complexes are characterized by the presence of intramolecular hydrogen bonds between the NH group of the phosphine ligands and the fluorido ligand. Stochiometric model reactions of nickel(II) fluorido complexes with PhB(OH)2 revealed that the former can be considered as intermediates in Suzuki–Miyaura cross coupling reactions. Catalytic experiments were attempted using 10 mol-% of trans-[Ni(F)(2-C5NF4){PPh2(Ind)}2] as catalyst and the activities of the PPh2(Ind) complex were compared to the ones of an analogous nickel(II) fluorido complex, bearing PPh3 instead of PPh2(Ind) as ligands. The latter exhibited a somewhat lower catalytic activity suggesting a slight influence of the H-bonds in the outer coordination sphere.  相似文献   

17.
η3-Allylnickel alkoxides {η3-C3H5NiOR}2 (R = Me, Et, i-Pr, Ph, SiPh3) may be activated by gaseous boron trifluoride (BF3) to give active catalysts for the dimerization of propene in homogeneous phase. In CH2Cl2 at ?20 °C catalytic turnover numbers of 5000 mol propene(mol Ni)?1h?1 were measured. The nature of the OR group influences both the catalytic activity and the oligomerization product distribution. The ratio of methylpentenes to dimethylbutenes in the dimer fraction may be controlled by the presence of additional phosphine ligands at the nickel atom. The nickel alkoxide precursor was heterogenized on alumina to give {Al2O3}–O–Ni–(η3-C3H5). Subsequent activation using gaseous BF3 generates a powerful heterogeneous olefin dimerization catalyst which converts 50 × 103 mol propene (mol Ni)?1 at ?10° to ?5°C in a batchwise process and 143 × 103 mol propene (mol Ni)?1 continuously to give 75% dimers and 25% higher oligomers. The solvent-free treatment of oxide supports, e.g. alumina or silica, with gaseous BF3 produces strong ‘solid acids’. The activated hydroxyl groups on the support surface serve as effective anchor sites for organometallic complexes to form heterogenous catalysts. By reaction of Ni(cod)2 with {Al2O3}O(BF3)H or {SiO2}O(BF3)H, η1, η2-cyclo-octenylnickel–O fragments may be fixed to the surface. In the absence of halogenated solvents, the resulting catalysts, e.g. {SiO2}O–(BF3)–Ni–(η1, η2-C8H13), dimerize propene continuously at +5°C at the rate of 800 × 103 mol liquid propene (mol Ni)?1.  相似文献   

18.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

19.
A μ3‐η222‐silane complex, [(Cp*Ru)33‐η222‐H3SitBu)(μ‐H)3] ( 2 a ; Cp*=η5‐C5Me5), was synthesized from the reaction of [{Cp*Ru(μ‐H)}33‐H)2] ( 1 ) with tBuSiH3. Complex 2 a is the first example of a silane ligand adopting a μ3‐η222 coordination mode. This unprecedented coordination mode was established by NMR and IR spectroscopy as well as X‐ray diffraction analysis and supported by a density functional study. Variable‐temperature NMR analysis implied that 2 a equilibrates with a tautomeric μ3‐silyl complex ( 3 a ). Although 3 a was not isolated, the corresponding μ3‐silyl complex, [(Cp*Ru)33‐η22‐H2SiPh)(H)(μ‐H)3] ( 3 b ), was obtained from the reaction of 1 with PhSiH3. Treatment of 2 a with PhSiH3 resulted in a silane exchange reaction, leading to the formation of 3 b accompanied by the elimination of tBuSiH3. This result indicates that the μ3‐silane complex can be regarded as an “arrested” intermediate for the oxidative addition/reductive elimination of a primary silane to a trinuclear site.  相似文献   

20.
To address the question of the role of chirality at the metal in enantioselective catalysis, a pseudo‐tetrahedral three‐legged piano‐stool complex has been prepared, i.e. [RuCl(C26H27N2P)](CF3SO3). Anchoring a phosphine and a pyrazole tether to an arene (PArN) yields, after η611 coordination to ruthenium, [{η611‐(PArN)}RuCl]+ as a 1:1 mixture of enantiomers. Unfortunately, all attempts to resolve the enantiomers failed. The structure solution revealed the presence of racemic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号