首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

2.
The pool boiling heat transfer and critical heat flux CHF of saturated HFE-7100 at atmospheric pressure on a confined smooth copper surface were experimentally studied. The horizontal upward boiling surface was confined by a face-to-face parallel unheated surface. We analysed the effects obtained by changing the diameter of the unheated surface and the gap between the boiling surface and the adiabatic surface. The gap values investigated were s = 0.5, 1.0, 2.0, 3.5 mm. To confine the circular boiling surface (d = 30 mm), two different Plexiglas discs were used: one with a diameter D = 30 mm, equal to that of the copper boiling surface, and the other with a diameter D = 60 mm, equal to that of the overall test section support. For each configuration, boiling curves were obtained up to the thermal crisis. For both configurations, it was observed that, at low wall superheat, the effect of confinement was not significant if Bo > 1, while for Bo ? 1 the heat transfer coefficient increased as the channel width s decreased. By contrast, at high wall superheat, a drastic reduction in both heat transfer and CHF was seen when the channel width s decreased; this reduction was less pronounced when the smaller confinement disc (D = 30 mm) was used. CHF data were also compared with the values predicted by literature correlations.  相似文献   

3.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

4.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

5.
In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 °C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001%, 0.001%, 0.01%, and 0.05%. For the dispersion of CNTs, polyvinyl pyrrolidone polymer is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the aqueous solutions with CNTs are lower than those of pure water in the entire nucleate boiling regime. On the other hand, critical heat flux of the aqueous solution is enhanced greatly showing up to 200% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat fluxes and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results in.  相似文献   

6.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

7.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

8.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

9.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

10.
Enhancement of the critical heat flux in pool boiling by the attachment of a honeycomb-structured porous plate on a heated surface is investigated experimentally using water under saturated boiling conditions. As the height of the honeycomb porous plate on the heated surface decreases, the CHF increases to 2.5 MW/m2, which is approximately 2.5 times that of a plain surface (1.0 MW/m2). Automatic liquid supply due to capillary action and reduction of the flow resistance for vapor escape due to the separation of liquid and vapor flow paths by the honeycomb-structure are verified to play an important role in the enhancement of the CHF. A simplified one-dimensional model for the capillary suction limit, in which the pressure drops due to liquid and vapor flow in the honeycomb porous plate balances the capillary force, is applied to predict the CHF. The calculated results are compared with the measured results.  相似文献   

11.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

12.
Many heat exchangers, such as shell and tube heat exchangers and kettle reboilers, involve boiling with flow across tubes. For rational design of such heat exchangers, it is desirable to be able to predict heat transfer on a single tube. The dimensionless correlation presented here agrees well with available data for subcooled boiling during crossflow on a single tube. The correlating parameters are the same as those used for boiling inside tubes16. The data correlated include three fluids, four tube materials, tube diameters from 1.2 to 25.4 mm, subcooling from 0 to 80°C, and velocities from 0.02 to 7.8 m/s. The mean deviation of 334 data points is 9.5%. Hence the new correlation appears to be usable over a wide range of parameters.  相似文献   

13.
Pool boiling on flat plates in microgravity has been studied for more than 50 years. The results of recent experiments performed in sounding rocket are presented and compared to previous results. At low heat flux, the vertical oscillatory motion of the primary bubble is responsible for the increase in the heat transfer coefficient in microgravity compared to ground experiments. The effect of a non-condensable gas on the stabilisation of the large primary bubble on the heater is pointed out. Experiments on isolated bubbles are also performed on ground and in parabolic flight. The effect of a shear flow on the bubble detachment is highlighted. A force balance model allows determining an expression of the capillary force and of the drag force acting on the bubble.  相似文献   

14.
A review of pool and forced convective boiling of binary mixtures   总被引:1,自引:0,他引:1  
Boiling of binary mixtures is characterized by a close linking between heat and mass transfer processes, with the evaporation rate usually being limited by the mass transfer process. This is significantly different from single-component systems where interfacial mass transfer rates are normally very high. Information on pool boiling of binary mixtures is widely available in the literature, whereas research on forced convective boiling of mixtures has become significant only over the last few years. This paper presents a brief review of experimental results obtained in pool and forced convective boiling of binary mixtures and upgrades the empirical or theoretical predictive tools for both situations.  相似文献   

15.
Correlations for nucleate boiling heat transfer should be improved, or in the long term possibly be replaced, by the development of mechanistic simulations that include the non-uniform spacing and variable characteristics of the nucleation sites and non-linear interactions between the sites. This paper discusses the interactions that should be included in simulations and some lessons from a first attempt to validate a particular simulation against experimental spatio-temporal data for wall temperature. Input data for nucleation site positions and characteristics are a particular problem and the prospects for obtaining this data from measurements that are independent of boiling are discussed.  相似文献   

16.
Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well-known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. A rectangular flow channel with 10-mm width and 5-mm height was used. A 10 mm-diameter disk-type copper surface, heated by conduction heat transfer, was placed at the bottom surface of the flow channel as a test heater. Aqueous nanofluids with alumina nanoparticles at the concentration of 0.01% by volume were investigated. The experimental results showed that the nanofluid flow boiling CHF was distinctly enhanced under the forced convective flow conditions compared to that in pure water. Subsequent to the boiling experiments, the heater surfaces were examined with scanning electron microscope and by measuring contact angle. The surface characterization results suggested that the flow boiling CHF enhancement in nanofluids is mostly caused by the nanoparticles deposition of the heater surface during vigorous boiling of nanofluids and the subsequent wettability enhancements.  相似文献   

17.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   

18.
19.
Pool boiling heat transfer has been investigated for various binary mixtures, including acetone/isopropanol, water/acetone, water/methanol, water/ethanol, water/isopropanol, water/monoethanolamine, water/diethanolamine and water/triethyleneglycol as test solutions. Many correlations have been developed to predict the pool boiling heat transfer coefficient in mixtures in the past few decades, however the predicted values are not confirming. In addition, the application of many existing correlations requires some individual adjusting parameters that may be not available for every system. In this investigation, a new set of experimental data are presented. These data have been compared to major existing correlations. It is observed that the pool boiling heat transfer coefficients in mixtures are less than the ideal boiling heat transfer coefficient. A new semi-empirical model has been proposed based on the mass transfer resistance to predict the boiling heat transfer coefficient with satisfactory accuracy. The new model does not include any tuning parameter and is applicable to any given binary system. The performance of the proposed model is superior to most existing correlations.  相似文献   

20.
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m−2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12-1.67, 0.94-1.39, and 0.85-1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号