首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection and quantification of nucleic acid and proteomic biomarkers in bodily fluids is a critical part of many medical screening and diagnoses. However, majority of the current detection platforms are not ideal for routine, rapid, and low-cost testing in point-of-care settings. To address this issue, we developed a concept for a disposable universal point-of-care biosensor that can detect and quantify nucleic acid and proteomic biomarkers in diluted serum samples. The central tenet of sensing is the use of dielectrophoresis, electrothermal effects, and thermophoresis to selectively and rapidly isolate the biomarkers of interest in electrodes and then quantify using electrical impedance. When the sensor was applied to quantify microRNA and antigen biomarker molecules directly in diluted serum samples, it produced a LOD values in the fM range and sensitivity values from 1012 to 1015 Ω/M with a 30 min assay time and assay cost of less than $50 per assay.  相似文献   

2.
Immuno-biosensor inhibition assays for the detection of streptomycin and dihydrostreptomycin residues in whole cows' milk, honey, pig kidney and pig muscle are reported. The antibody showed high cross-reactivity with dihydrostreptomycin in various foodstuffs (buffer 103%, milk 96%, honey 84%, kidney extract 129% and muscle extract 98%). There was no significant cross-reaction with other aminoglycosides or commonly used antibiotics. A streptomycin derivative was used to prepare a stable, reusable sensor chip surface. The assay allowed the direct analysis of bovine whole milk (fat content approximately 3.5%). Honey samples required dilution with buffer, while kidney and muscle samples from pigs were homogenized in an aqueous extraction buffer and clarified by centrifugation. The limit of detection for each assay was determined from known streptomycin-free samples (n = 20; mean - (3 x standard deviation)) and the results were as follows: milk 30 microg kg(-1), honey 15 microg kg(-1), kidney 50 microg kg(-1) and muscle 70 microg kg(-1). Repeatability (or relative standard deviation) between runs were calculated (n = 3) at the respective Community maximum residue limits (MRL) and 0.5 x MRL with the exception of honey since no European MRL exists at present. Results were determined as 4.3% (200 microg kg(-1)) and 2.8% (100 microg kg(-1)) in milk, 13.3% (40 microg kg(-1)) and 9.5% (20 microg kg(-1)) in honey, 7.1% (1000 microg kg(-1)) and 7.6% (500 microg kg(-1)) in kidney and 7.1% (500 microg kg(-1)) and 11% (250 microg kg(-1)) in muscle.  相似文献   

3.
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 μg L−1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (1) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future.  相似文献   

4.
A nanoscale RGD-pyrene-graphene oxide (GO) biosensor was prepared for real-time in situ detection of a cancer cell surface marker, integrin αvβ3. This nanoscale GO-based biosensor is simple, robust, sensitive and of high selectivity. It can also be adapted to other cancer cell surface marker evaluation systems.  相似文献   

5.
In this work, highly sensitive and selective hydrogel microstructures to detect hydrogen peroxide releasing from cancer cell based on electrochemical biosensors are proposed. Gold nanoparticles (AuNPs) were conjugated with horseradish peroxidase and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate. The prepolymer solution was photolithographically patterned in alignment with an array of Au microelectrodes fabricated on glass. Performance of this biosensor was characterized by transmission electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Under the optimal condition, the proposed biosensor can detect hydrogen peroxide (H2O2) in a wide linear range from 2 to 100 μM with a low detection limit of 0.01 μM. It can be also directly used to mark out extracellular H2O2 released from prostate cells. Furthermore, the reproducibility, stability, and selectivity of the biosensor are analogous with the previous report, so this methodology can be used in physiological and pathological detection of H2O2 in the future.  相似文献   

6.
In the present paper, a comparative study using Co-phthalocyanine and Prussian Blue-modified screen-printed electrodes, has been performed. Both the electrodes have demonstrated an easiness of preparation together with high sensitivity towards thicoholine (LOD = 5 × 10−7 and 5 × 10−6 M for Co-phthalocyanine and Prussian Blue, respectively) with high potentialities for pesticide measurement. Prussian Blue-modified screen-printed electrodes were then selected for successive enzyme immobilization due to their higher operative stability demonstrated in previous works. AChE and BChE enzymes were used and inhibition effect of different pesticides was studied with both the enzymes. AChE-based biosensors have demonstrated a higher sensitivity towards aldicarb (50% inhibition with 50 ppb) and carbaryl (50% inhibition with 85 ppb) while BChE biosensors have shown a higher affinity towards paraoxon (50% inhibition with 4 ppb) and chlorpyrifos-methyl oxon (50% inhibition with 1 ppb). Real samples were also tested in order to evaluate the matrix effect and recovery values comprised between 79 and 123% were obtained.  相似文献   

7.
Vascular endothelial growth factor (VEGF) is a cytokine and endothelial cell (EC) mitogen that has been studied for its role in angiogenesis of malignant tumors. Elevated quantities of VEGF in the serum and plasma of patients have been correlated with the presence of cancer and metastasis. Since VEGF induces hyperpermeability of EC monolayers, this protein can be detected in vitro with a whole cell-based biosensor. This biosensor consists of a confluent monolayer of human umbilical vein endothelial cells (HUVECs) attached to a cellulose triacetate (CTA) membrane of an ion-selective electrode (ISE). Previous studies regarding this biosensor have shown that when the biosensor was exposed to a model toxin, such as histamine, the response of the biosensor served as an indirect measurement of the presence of histamine. Similarly, the biosensor responds to the presence of VEGF, but is much more sensitive because VEGF is known to be 50,000-fold more potent than histamine when inducing EC hyperpermeability. The ISE response increased with increasing VEGF concentration. Since lower concentrations required more exposure time, the detection limit was established as a function of exposure time (2–10 h). The practical applicability of the biosensor was also established with cultured human melanoma cells WM793 (nonmetastatic) and 1205LU (metastatic). The resultant change in the potential values revealed significant production of VEGF from the 1205LU cells. A VEGF ELISA was performed to confirm the VEGF concentration in each sample. The biosensor closely predicted the concentrations determined through the ELISA. These results support the use of a cell-based ISE as a quick screening method for the presence of VEGF.  相似文献   

8.
Abstract  Individuals with known hypersensitivity or food allergy need to avoid ingestion of provoking food. Correct labelling of allergenic content in manufactured food products and the reliable determination of its residual immunoreactivity after several processing steps are therefore a major concern for the food industry. We evaluated the applicability of a new immunochip biosensor system to reveal the allergenic profile of the whey protein β-lactoglobulin (β-LG) in its natural biological cow’s milk matrix upon processing by tryptic digestion and extensive heat treatment. Colorimetric immunochemical signals generated by gold nanoparticles (Au NPs), in particular their functional optical property based on resonance-enhanced absorption of mirror-reflected light, were directly visible to the ‘naked’ eye of the analyst without the need of any instrumentation or enzyme-substrate for read-out. By using affinity-purified polyclonal rabbit IgG against the native protein, no antigenicity was detected for tryptic fragments. Both heat-denatured whey proteins and cow’s whole milk, however, did not lose their antibody-binding capacity even after a processing time of 20 min at 95°C for the whey proteins, and 60 min at 90°C for the milk, though the immunochemical response was considerably low compared to the unprocessed β-LG. Additionally, cross-reactivity and the false positive as well as false negative predictive value of the chip system were highlighted critically. Graphical abstract     相似文献   

9.

Abstract  

Individuals with known hypersensitivity or food allergy need to avoid ingestion of provoking food. Correct labelling of allergenic content in manufactured food products and the reliable determination of its residual immunoreactivity after several processing steps are therefore a major concern for the food industry. We evaluated the applicability of a new immunochip biosensor system to reveal the allergenic profile of the whey protein β-lactoglobulin (β-LG) in its natural biological cow’s milk matrix upon processing by tryptic digestion and extensive heat treatment. Colorimetric immunochemical signals generated by gold nanoparticles (Au NPs), in particular their functional optical property based on resonance-enhanced absorption of mirror-reflected light, were directly visible to the ‘naked’ eye of the analyst without the need of any instrumentation or enzyme-substrate for read-out. By using affinity-purified polyclonal rabbit IgG against the native protein, no antigenicity was detected for tryptic fragments. Both heat-denatured whey proteins and cow’s whole milk, however, did not lose their antibody-binding capacity even after a processing time of 20 min at 95°C for the whey proteins, and 60 min at 90°C for the milk, though the immunochemical response was considerably low compared to the unprocessed β-LG. Additionally, cross-reactivity and the false positive as well as false negative predictive value of the chip system were highlighted critically.  相似文献   

10.
Wong FC  Ahmad M  Heng LY  Peng LB 《Talanta》2006,69(4):888-893
An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R2 = 0.98, n = 3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90 mM AChCl (R2 = 0.984, n = 6). The response time of the biosensor is 12 min. Based on the optimum incubation time of 15 min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7 mg/L of dichlorvos (17-85% inhibition, R2 = 0.991, n = 9). The detection limit for dichlorvos was 0.5 mg/L. The results of the analysis of 1.7-6.0 mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.  相似文献   

11.
Detection of bisphenol A using a novel surface plasmon resonance biosensor   总被引:1,自引:0,他引:1  
We present a compact surface plasmon resonance (SPR) biosensor for the detection of bisphenol A (BpA), an endocrine-disrupting chemical. The biosensor is based on an SPR sensor platform (SPRCD) and the binding inhibition detection format. The detection of BpA in PBS and wastewater was performed at concentrations ranging from 0.05 to 1,000 ng/ml. The limit of detection for BpA in PBS and wastewater was estimated to be 0.08 and 0.14 ng/ml, respectively. It was also demonstrated that the biosensor can be regenerated for repeated use. Results achieved with the SPR biosensor are compared with those obtained using ELISA and HPLC methods.  相似文献   

12.
Kuswandi B  Fikriyah CI  Gani AA 《Talanta》2008,74(4):613-618
An optical fiber biosensor consisting of acetylcholinesterase (AChE) and bromothymol blue (BTB) doped sol-gel film was employed to detect organophosphate pesticide chlorpyrifos. The main advantage of this optical biosensor is the use of a single sol-gel film with immobilized AChE and BTB. The compatibility of this mixture (AChE and BTB) with the sol-gel matrix has prevented leaching of the film. The immobilization of the enzyme and indicator was simple without chemical modification. The biosensing element on single sol-gel film has been placed inside the flow-cell for flow system. In the presence of a constant AChE, a color change of the BTB and the measured reflected signal at wavelength 622nm could be related to the pesticide concentration in the sample solutions. The performance of optical biosensor in the flow system has been optimized, including chemical and physical parameters. The response time of the biosensor is 8min. A linear calibration curve of chlorpyrifos against the percentage inhibition of AChE was obtained from 0.05 to 2.0mg/L of chlorpyrifos (18-80% inhibition, R(2)=0.9869, n=6). The detection limit for chlorpyrifos was 0.04mg/L. The results of the analysis of 0.5-1.5mg/L of chlorpyrifos using this optical biosensor agreed well with chromatographic method.  相似文献   

13.
A method is proposed for the clean-up and preconcentration of natural and synthetic estrogens from aqueous samples employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE). The selectivity of the MIP was checked toward several selected natural and synthetic estrogens such as estrone (E1), 17β-estradiol (β-E2), 17α-estradiol (α-E2), estriol (E3), 17α-ethinylestradiol (EE2), dienestrol (DIES) and diethylstilbestrol (DES). Ultrahigh pressure liquid chromatography (UHPLC) coupled to a TSQ triple quadrupole mass spectrometry (QqQ) was used for analysis of target analytes. The chromatographic separation of the selected compounds was performed in less than 2 min under isocratic conditions. The method was applied to the analysis of estrogens in spiked river and tap water samples. High recoveries (>82%) for estrone, 17β-estradiol, 17α-estradiol, estriol and 17α-ethinylestradiol were obtained. Lower but still satisfactory recoveries (>48%) were achieved for dienestrol and diethylstilbestrol. The method was validated and found to be linear in the range 50-500 ng L(-1) with correlation coefficients (R(2)) greater than 0.995 and repeatability relative standard deviation (RSD) below 8% in all cases. For analysis of 100-mL sample, the method detection limits (LOD) ranged from 4.5 to 9.8 ng L(-1) and the limit of quantitation (LOQ) from 14.9 to 32.6 ng L(-1). To demonstrate the potential of the MIP obtained, a comparison with commercially available C(18) SPE was performed. Molecularly imprinted SPE showed higher recoveries than commercially available C(18) SPE for most of the compounds. These results showed the suitability of the MIP-SPE method for the selective extraction of a class of structurally related compounds such as natural and synthetic estrogens.  相似文献   

14.
Two recent techniques using optical immunosensor technology were developed for the quantification of milk proteins in dairy products. The first application is the simultaneous quantification of the 3 major caseins (alpha(s1), beta, and kappa). This assay consists of a 2-step sandwich strategy, with 2 monoclonal antibodies directed against the N- and C-terminal extremities of each of the caseins, respectively. This strategy permits only intact caseins to be quantified, and not their degradation products. The technique is fast (10 min), sensitive (detection limit about 0.87 microg/mL), and has been applied successfully to raw and drinking milks. In the second application, the severity of the heat treatment sustained by a milk of unknown origin is determined by quantifying separately the native and heat-denatured forms of alpha-lactalbumin with specific monoclonal antibodies. The technique allows discrimination of the different heat treatments studied (pasteurization, direct and indirect ultra-high temperature, sterilization), is fast (4 min), repeatable, fully automated, and requires no pretreatment of the milk sample.  相似文献   

15.
Detection of endotoxin using an evanescent wave fiber-optic biosensor   总被引:9,自引:0,他引:9  
The lipopolysaccharide endotoxin is the most powerful immune stimulant known and a causative agent in the clinical syndrome known as sepsis. Sepsis is responsible for more than 100,000 deaths annually, in large part due to the lack of a rapid, reliable, and sensitive diagnostic technique. This study describes the detection of LPS fromE. coli at concentrations as low as 10 ng/mL, in 30 s using an evanescent wave fiber-optic biosensor. Polymyxin B, covalently immobilized onto the surface of the fiber-optic probe, selectively bound fluorescently labeled LPS. Unlabeled LPS was detected in a competitive assay format using labeled LPS for signal generation. The competitive assay format worked in both buffer and plasma with similar sensitivities. This method can be used with other LPS capture molecules such as antibodies, lectins, or antibiotics, to simultaneously detect LPS and to determine the LPS serotype. The LPS assay using the fiber-optic biosensor is applicable to both clinical and environmental testing.  相似文献   

16.
Detection of avian influenza virus using an interferometric biosensor   总被引:1,自引:0,他引:1  
An interferometric biosensor immunoassay for direct and label-less detection of avian influenza through whole virus capture on a planar optical waveguide is described. The assay response is based on index of refraction changes that occur upon binding of virus particles to unique antigen-specific (hemagglutinin) antibodies on the waveguide surface. Three virus subtypes (two H7 and one H8) in buffer solution were tested using both monoclonal and polyclonal capture antibodies. The real-time response of the antigen-antibody interaction was measured and was shown to be concentration-dependent, with detection limits as low as 0.0005 hemagglutination units per milliliter. A simple sandwich assay was shown to further increase the biosensor response.  相似文献   

17.
The application of a disposable electrochemical DNA biosensor to wastewater samples is reported. The DNA biosensor is assembled by immobilising double-stranded calf thymus DNA on the surface of a disposable, carbon screen-printed electrode (SPE). The oxidation signal of the guanine base, obtained by a square wave voltammetric scan, is used as analytical signal. The presence of compounds with affinity for DNA is measured by their effect on the guanine oxidation. The comparison of the results with a toxicity test based on bioluminescent bacteria has confirmed the applicability of the method to real samples.  相似文献   

18.
We assessed the abilities of wild p53 and mutant p53 proteins to interact with the consensus DNA-binding sequence using a MOSFET biosensor. This is the first report in which mutant p53 has been detected on the basis of DNA-protein interaction using a FET-type biosensor. In an effort to evaluate the performance of this protocol, we constructed the core domain of wild p53 and mutant p53 (R248W), which is DNA-binding-defective. After the immobilization of the cognate DNA to the sensing layer, wild p53 and mutant p53 were applied to the DNA-coated gate surface, and subsequently analyzed using a semiconductor analyzer. As a consequence, a significant up-shift in drain current was noted in response to wild p53, but not mutant p53, thereby indicating that sequence-specific DNA-protein interactions could be successfully monitored using a field-effect-based biosensor. These data also corresponded to the results obtained using surface plasmon resonance (SPR) measurements. Taken together, our results show that a FET-type biosensor might be promising for the monitoring of mutant p53 on the basis of its DNA-binding activity, providing us with very valuable insights into the monitoring for diseases, particularly those associated with DNA-protein binding events.  相似文献   

19.
Akyilmaz E  Dinçkaya E 《Talanta》2003,61(2):113-118
An amperometric biosensor based on catalase enzyme for alcohol determination was developed. To construct the biosensor catalase was immobilized by using gelatin and glutaraldehyde on a Clark type dissolved oxygen (DO) probe covered with a teflon membrane which is sensitive for oxygen. The working principle of the biosensor depends on two reactions, which one is related to another, catalyzed by catalase enzyme. In the first reaction catalase catalyzes the degradation of hydrogen peroxide and oxygen is produced and also a steady-state DO concentration occurs in a few minutes. When ethanol added to the medium catalase catalyzes the degradation of both hydrogen peroxide and ethanol and this results in a new steady-state DO concentration. Difference for first and the last steady-state DO concentration occurred in the interval surface of DO probe membrane, which related to ethanol concentration, are detected by the biosensor. The biosensor response depends linearly on ethanol concentration between 0.05 and 1.0 mM with a detection limit of 0.05 mM and a response time of 3 min. In the optimization studies of the biosensor phosphate buffer (pH 7.0; 50 mM) and 35 °C were established as providing the optimum working conditions. In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity, operational and storage stability were carried out. Finally, by using the biosensor developed and enzimatic-spectrophotometric method alcohol concentration of some alcoholic drinks were determined and results were compared.  相似文献   

20.
《印度化学会志》2021,98(11):100189
In this study, polycarbonate coated with Au nanoparticles and anti-methamphetamine aptamer is used for the detection of methamphetamine. Immobilization of aptamer on Au nanoparticle modified polycarbonate surface, and monitoring of methamphetamine were evaluated with AFM, ATR-FTIR, and DRS techniques. FT-IR reflection spectrum shows a pick at 3300–3500 ​nm range (related to amine groups of aptamer bases). After immobilization of aptamer on Au nanoparticle modified polycarbonate, 8% decrease in reflection was observed. To evaluate of detection power of the designed nanobiosensor, its sensitivity for the detection of different concentrations of methamphetamine was measured with cyclic voltammetry. The detection limits of the designed nanobiosensor in two methods of FT-IR and cyclic voltammetry were 2 and 5 ​μM, respectively. Notably, the designed nanobiosensor in two different methods didn't show any response to glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号