首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Du  Hai-En  Er  Guo-Kang  Iu  Vai Pan  Li  Li-Juan 《Nonlinear dynamics》2023,111(10):9025-9047

In this paper, a new method named constrained parameter-splitting perturbation method for improving the solutions obtained from the parameter-splitting perturbation method is proposed for solving the problems in some extremal cases, such as the strongly nonlinear vibration of an Euler–Bernoulli cantilever. The proposed method takes the advantages of both the perturbation method and the harmonic balance method. The idea is that the solution obtained by the parameter-splitting perturbation method is substituted into the equation of motion and then the accumulative error of the equation is minimized for determining the unknown splitting parameters under the constraints constructed under the frame of harmonic balance method. The forced vibration of an oscillator with cubic geometric nonlinearity and inertia nonlinearity and the forced vibration of a planar microcantilever beam with a lumped tip mass are studied as examples to reveal the efficacy of the proposed method. The inspection of the steady-state response including its stability is conducted by means of comparing the frequency-response curves obtained by the proposed method with those obtained by the numerical continuation method and harmonic balance method, respectively, to show the efficacy and the advantages of the proposed method. Meanwhile, the nonlinear ordering effect on the solutions of the proposed method is also studied by comparing the results obtained by using different nonlinear orderings in the systems. In the last, we found through convergence examinations that it is necessary to have corrections to the erroneous solution which are obtained by harmonic balance method and Floquet theory in stability analysis.

  相似文献   

3.
In this paper, a new technique is introduced by combining Homotopy perturbation method and modified Lindstedt-Poincaré technique to obtain the periodic solutions of certain non-smooth oscillators. In this technique, homotopy perturbation method is re-written in iterative form to linearize perturbation process by homotopy, and then, the modified Lindstedt-Poincaré method is utilized to obtain next approximation for each iteration step. We realize that this new technique works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been confirmed and discussed. Only one or two iterations lead to high accuracy of the solutions. The result obtained and comparison with analytical solution and different methods provide confirmation for the validity of the technique.  相似文献   

4.
英文科学名词perturbation在不同学科中有不同的定名.在原子物理叫"微扰",在天文学、数学、力学里称为"扰动",更多场合用"摄动".  相似文献   

5.
The onedimensional problem of the propagation of a perturbation front from a point instantaneous source for transport processes with spatial–temporal nonlocality is considered. A class of nonlocality kernels with a singularity of the form t–1 for small times is used. The front propagation speed v is calculated and an expression for perturbations in the vicinity of the front is derived in the form of an asymptotic series in powers of the parameter = t – xv–1.  相似文献   

6.
Optimal control system of state space is a conservative system, whose approximate method should be symplectic conservation. Based on the precise integration method, an algorithm of symplectic conservative perturbation is presented. It gives a uniform way to solve the linear quadratic control (LQ control) problems for linear time-varying systems accurately and efficiently, whose key points are solutions of differential Riccati equation (DRE) with variable coefficients and the state feedback equation. The method is symplectic conservative and has a good numerical stability and high precision. Numerical examples demonstrate the effectiveness of the proposed method.  相似文献   

7.
In this paper, we analyze the effect of both deter- ministic and random perturbations of a regular multi-layered elastic structure on its stop band properties. The tool of choice is the transfer matrix method, which is both versatile and easy to implement. In both cases, we find that the stop-bands widen. We observe the appearance of very narrow pass-bands within the stop-bands, which can be observed in other instances in optics.  相似文献   

8.
A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF $_{6}$ gas combination is used and a Mach number $ M = 1.2$ incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in a short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments show very consistent linear growth with a growth rate in good agreement with those found in previous studies.  相似文献   

9.
10.
11.
12.
Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed based on the relative motion analysis from the equations. The features of the oscillating reference orbital elements are studied by using the perturbation theory. The changes in the relative orbit under perturbation are divided into three categories, termed scale enlargement, drift and distortion respectively. By properly choosing the initial mean orbital elements for the leader and follower satellites, the deviations from originally regular formation orbit caused by the perturbation can be suppressed. Thereby the natural formation is set up. It behaves either like non-disturbed or need little control to maintain. The presented reference orbital element approach highlights the kinematics properties of the relative motion and is convenient to incorporate the results of perturbation analysis on orbital elements. This method of formation design has advantages over other methods in seeking natural formation and in initializing formation.  相似文献   

13.
By introducing a new parametric transformation and a suitable nonlinear frequency expansion, the modified Lindstedt–Poincaré method is extended to derive analytical approximations for limit cycles in three-dimensional nonlinear autonomous dynamical systems. By considering two typical examples, it can be seen that the results of the present method are in good agreement with those obtained numerically even if the control parameter is moderately large. Moreover, the present prediction is considerably more accurate than some published results obtained by the multiple time scales method and the normal form method.  相似文献   

14.
A numerical method for simulating gas–liquid–solid three-phase flows based on the moving particle semi-implicit (MPS) approach was developed in this study. Computational instability often occurs in multiphase flow simulations if the deformations of the free surfaces between different phases are large, among other reasons. To avoid this instability, this paper proposes an improved coupling procedure between different phases in which the physical quantities of particles in different phases are calculated independently. We performed numerical tests on two illustrative problems: a dam-break problem and a solid-sphere impingement problem. The former problem is a gas–liquid two-phase problem, and the latter is a gas–liquid–solid three-phase problem. The computational results agree reasonably well with the experimental results. Thus, we confirmed that the proposed MPS method reproduces the interaction between different phases without inducing numerical instability.  相似文献   

15.
The flux reconstruction (FR) formulation can unify several popular discontinuous basis high-order methods for fluid dynamics, including the discontinuous Galerkin method, in a simple, efficient form. An arbitrary Lagrangian–Eulerian (ALE) extension to the high-order FR scheme is developed here for moving mesh fluid flow problems. The ALE Navier–Stokes equations are derived by introducing a grid velocity. The conservation law are spatially discretised on hybrid unstructured meshes using Huynh’s scheme (Huynh 2007) on anisotropic elements (quadrilaterals) and using Correction Procedure via Reconstruction scheme on isotropic elements (triangles). The temporal discretisation uses both explicit and implicit treatments. The mesh movement is described by node positions given as a time series, instead of an analytical formula. The geometric conservation law is tested using free stream preservation problem. An isentropic vortex propagation test case is performed to show the high-order accuracy of the developed method on both moving and fixed hybrid meshes. Flow around an oscillating cylinder shows the capability of the method to solve moving boundary viscous flow problems, with the numeric method further verified by comparison of the result on a smoothly deforming mesh and a rigid moving mesh.  相似文献   

16.
Based on the classical response surface method (RSM), a novel RSM using improved experimental points (EPs) is presented for reliability analysis. Two novel points are included in the presented method. One is the use of linear interpolation, from which the total EPs for determining the RS are selected to be closer to the actual failure surface; the other is the application of sequential linear interpolation to control the distance between the surrounding EPs and the center EP, by which the presented method can ensure that the RS fits the actual failure surface in the region of maximum likelihood as the center EPs converge to the actual most probable point (MPP). Since the fitting precision of the RS to the actual failure surface in the vicinity of the MPP, which has significant contribution to the probability of the failure surface being exceeded, is increased by the presented method, the precision of the failure probability calculated by RS is increased as well. Numerical examples illustrate the accuracy and efficiency of the presented method.  相似文献   

17.
In this paper, the photoviscoelasticity method of viscoelastic stress analysis has been discussed in detail.lt is shown that,in order to avoid the effects of shrinkage andaging in the test specimens, it is suggested that the specimens should be tempered for three days at a temperature of 60℃ before starting the experiments, and the temperature filtering arrangement is recommended in the experimental setups to keep the temperature absolutely constant. Besides the axi-symmetrical time-dependent stress state, the determination of the principle axes of the refraction tensor experimentally remains an unsufficiently solved problem. To avoid dynamic effect in the step wise loading, the time of measurement in every step should be limited in about one secend.  相似文献   

18.
19.
A numerical simulation method is developed to analyze the dynamic responses of electrostatic actuators, which are electromechanically-coupled systems. The developed method can be used to determine the dynamic responses of cantilever-type switches, which are an example of typical MEMS (Micro-Electro-Mechanical System) devices driven by an electrostatic force. We propose the approach that adopts a point charge to deal with electric field effects between electrodes. This approach may be considered as a lumped parameter model for the electrostatic interactions. An advantage of this model may be the easy incorporation of the electrostatic effects between electrodes into a multibody dynamics analysis algorithm. The resulting equations contain the variables for position, velocity, and electric charge to describe the motion of the masses and the charges on the electrodes in a system. By solving these equations simultaneously, the dynamic response of an electrostatically-driven system can be correctly simulated. In order to realize this approach, we implement the procedures into RecurDyn, the multibody dynamics software developed by the authors. The developed numerical simulation tool was evaluated by applying it to cantilever-type electrostatic switches in many different driving conditions. The results suggest that the developed tool may be useful for predicting behaviors of electrostatic actuators in testing as well as in design.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号