首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
为了适应市场对过热保护作用的PTC热敏陶瓷应用需求,采用了固相法的烧结工艺来制备PTC热敏陶瓷样品。主要研究了施主掺杂微量Y_2O_3的BaTiO_3基陶瓷在空气中1 340~1 360℃烧结0.5~1 h后其室温电阻率与升阻比(ρ_(max)/ρ_(min))随施主掺杂含量的变化关系。在实验中我们详细地阐述了BYT陶瓷样品的室温电阻率随施主掺杂含量(0.1≤x≤0.3 mol%)的变化曲线呈现类似"U"形曲线的半导化机理;根据Heywang-Jonker模型成功地解释了该样品的PTC效应随施主掺杂量的增加而呈现出先增加后减小的变化趋势的原因;讨论了烧结助剂SiO_2对BYT样品微观结构以及电性能的影响。  相似文献   

2.
La2O3对氧化铝透明陶瓷显微结构和透光性能的影响   总被引:4,自引:1,他引:4  
采用传统无压烧结工艺在氢气氛下制备Al2O3透明陶瓷。实验结果表明:MgO和La2O3复合添加时,随着La2O3掺杂量的增加体积密度总体上保持上升的趋势。随着保温时间的延长,陶瓷的致密化程度增大,残余气孔逐步排出,晶粒进一步长大。采用La2O3和MgO复合添加比单独掺入MgO陶瓷样品透过率更高,掺杂效果更好。在烧结温度为1750℃,保温时问为1h条件下,在波艮为300~800nm测试范围内,陶瓷样品的全透过率大于82%,最大值为86%。  相似文献   

3.
新型球形孔低孔隙率高强度泡沫铝合金   总被引:5,自引:1,他引:5       下载免费PDF全文
采用位移传感计算机技术, 实时测量液态泡沫铝合金孔隙率随时间变化Pl-t曲线. 研究了铝合金熔体泡沫化过程中熔体泡沫的孔隙率与泡沫孔形状从球形、类球形到多边形的变化规 律, 以及气泡孔径及壁厚变化规律. 由此获得了新型球形孔低孔隙率泡沫铝合金的控制方法. 研究了其压缩应力-应变曲线及吸能性能, 并与多边形孔高孔隙率泡沫铝合金的性能相比较.  相似文献   

4.
本文采用传统固相合成法制备了(Ba_(1-x)Ca_x)(Ti_(0.98)Sn_(0.02))O_3(BCTS,x=0.00、0.01、0.02、0.03)无铅压电陶瓷,研究了不同烧结温度下Ba(Ti,Sn)O_3压电陶瓷材料的微观形貌对相结构及压电性能的影响。X-射线衍射(XRD)分析表明,所有陶瓷样品均为单一、纯钙钛矿结构,无第二相生成。通过扫描电子显微镜(SEM)图片可知,陶瓷样品在烧结温度为1450℃时,晶粒更加均匀、陶瓷结构更加致密,气孔较少并且晶粒成螺旋状结构生长。当陶瓷烧结温度为1450℃,并且x=0.01时,陶瓷的综合性能达到最佳,其压电常数(d33)达到346pC/N。  相似文献   

5.
为研究弱凝胶的形成过程,并把高分子弱凝胶用于三次采油,采用三维Monte Carlo模拟了高分子溶液凝胶化过程. 模拟预测了凝胶化开始的时间,得到了凝胶化过程中分子量分布的演化规律和胶团生长的三维图像. 发现生成溶胶与凝胶团的歧化过程,初始聚合物的浓度对能否形成凝胶至关重要,低于临界浓度不能形成凝胶. 模拟了凝胶化速度和聚合物浓度以及交联剂浓度的关系,并与粘度随凝胶化时间变化的实验结果进行比较, 结果表明, 聚合物浓度较高时,浓度对交联反应的影响减弱,这一趋势与实验结果相一致.  相似文献   

6.
非晶态半导体硅(α-Si:H)薄膜作为新型的光电子材料,近年来备受关注,发展迅速。但其晶化机理有待深入探索。用分形理论所作的分析表明,在一定条件下,a-Si:H薄膜中形成的微结构具有分形性质。本文计算了分维值,讨论了a-Si:H薄膜结构弛豫(相变)与分形结构形成的关联,和非晶硅薄膜可能的晶化机理。并研究了在高真空中用透射电子显微镜(TEM)及动态方法跟踪观测a-Si:H薄膜原位(in situ)退火过程中发生的晶化现象,获得晶化形貌的显微图像。利用图像处理技术对显微像进行光电转换,A/D转换和数字计算,得到a-Si:H薄膜样品在不同退火条件下,显微象的Sandbox关系曲线。从而获得薄膜中形成不同分形结构的分维。文中给出应用分形理论对非晶态半导体薄膜进行分析的技术细节。  相似文献   

7.
采用以尿素为燃料的燃烧合成法制备Ce0.8Sm0.2O1.9(SDC)氧离子导体材料, 对燃烧合成粉体的物相和显微形态进行了表征, 并研究了燃烧法合成SDC的烧结性能以及烧结体的导电性能. 研究结果表明, 采用尿素燃烧法合成SDC具有简便高效和合成粉体烧结活性高的优点. 经过燃烧过程后即可得到立方萤石结构的纯相SDC粉体, 合成粉体的分散性良好, 为50~150 nm的球形颗粒, 具有高的烧结活性, 在1250 ℃的烧结温度下, 陶瓷样品的相对密度可达到95.1%. 在600和800 ℃的测试温度下, 烧结温度为1250 ℃的陶瓷样品的电导率分别达到5.4×10-2和1.0×10-1 Ω-1·cm-1.  相似文献   

8.
波长型SPR检测仪的灵敏度探讨   总被引:1,自引:0,他引:1  
利用自行设计构建的可变入射角的波长型表面等离子体共振(SPR)检测仪, 在不同浓度的蔗糖溶液中测定了不同入射角度(80°~66°)的共振曲线, 经过处理得到共振峰位、半高宽及灵敏度随入射角和样品折射率变化的三维图像. 在此基础上探讨了波长型SPR检测仪的主要参数对仪器性能的影响, 从理论和实验上证明了影响灵敏度的主要因素为共振波长, 并且随着共振波长的增大, 检测灵敏度迅速提高.  相似文献   

9.
Sm2O3掺杂CeO2纳米粉体的烧结动力学   总被引:2,自引:0,他引:2  
对Sm2O3掺杂CeO2纳米粉体的烧结性能进行了研究, 得出等速烧结过程中试样的线收缩率、密度、气孔率随烧结温度的变化规律, 它们随烧结温度的变化均呈"S"型曲线关系, 利用非线性回归了等速烧结过程动力学方程. 结果表明, Sm2O3掺杂CeO2纳米粉体的烧结过程分为3个阶段, 当烧结温度低于1000 ℃时, 线收缩率与密度变化较小, 处于烧结的初期; 在1000~1400 ℃时, 随着烧结温度的升高, 线收缩率与体积密度急剧增大, 材料开始烧结并致密化; 当烧结温度高于1400 ℃时, 线收缩率与体积密度趋于一恒定值, 材料已经致密化. 由归一化速率方程可知, 在T=1225 ℃时, 材料的烧结致密化速率最大.  相似文献   

10.
壳聚糖膜对水杨酸吸附及释放过程的实时介电谱法研究   总被引:8,自引:0,他引:8  
李玉红  宋超  赵孔双 《化学学报》2004,62(16):1495-1502
制备了壳聚糖膜,并且测量了壳聚糖膜/水杨酸溶液、含水杨酸的壳聚糖膜/蒸馏水两个膜/液体系的介电谱,在100~700 kHz频率范围,发现两种体系都存在显著的介电弛豫现象,而且该弛豫的特征参数随壳聚糖膜在相应溶液相中浸泡时间的不同而变化.将该体系介电模型化、并利用在Maxwell-Wagner界面极化理论上建立的公式对介电谱进行解析,得到了体系中两相--壳聚糖膜相和溶液相的介电常数和电导率随时间的变化曲线.通过分析电导变化曲线得知,壳聚糖膜对溶液中的水杨酸有吸附现象,而含有水杨酸的壳聚糖膜在蒸馏水中可以缓慢释放出水杨酸;吸附过程包含的机制有氢键的形成、疏水力和扩散;而水杨酸的脱附过程则包含吸附过程几种机制的逆反应.理论分析和解析结果都验证了介电谱方法对吸附和释放过程实时监测的有效性.  相似文献   

11.
S Suzuki  H Arai 《Radioisotopes》1990,39(4):155-162
In single-photon emission computed tomography (SPECT) and X-ray CT one-dimensional (1-D) convolution method is used for their image reconstruction from projections. The method makes a 1-D convolution filtering on projection data with a 1-D filter in the space domain, and back projects the filtered data for reconstruction. Images can also be reconstructed by first forming the 2-D backprojection images from projections and then convoluting them with a 2-D space-domain filter. This is the reconstruction by the 2-D convolution method, and it has the opposite reconstruction process to the 1-D convolution method. Since the 2-D convolution method is inferior to the 1-D convolution method in speed in reconstruction, it has no practical use. In the actual reconstruction by the 2-D convolution method, convolution is made on a finite plane which is called convolution window. A convolution window of size N X N needs a 2-D discrete filter of the same size. If better reconstructions are achieved with small convolution windows, the reconstruction time for the 2-D convolution method can be reduced. For this purpose, 2-D filters of a simple function form are proposed which can give good reconstructions with small convolution windows. They are here defined on a finite plane, depending on the window size used, although a filter function is usually defined on the infinite plane. They are however set so that they better approximate the property of a 2-D filter function defined on the infinite plane. Filters of size N X N are thus determined. Their value varies with window size. The filters are applied to image reconstructions of SPECT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
无机纳米材料与高分子基质共混构成有机-无机复合材料,对其电学、光学和机械性能产生显著影响,因而受到广泛关注.为使其性能得到切实改善,需要使无机纳米材料在高分子基质中均匀分散.对其分散状态的检测传统方法是对材料进行超薄、连续切片后,用透射电子显微镜(TEM)进  相似文献   

13.
We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings.  相似文献   

14.
X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.  相似文献   

15.
A study concerning the image quality in electron paramagnetic resonance imaging in two‐dimensional spatial experiments is presented. The aim of the measurements was to improve the signal‐to‐noise ratio (SNR) of the projections and the reconstructed image by applying modulation amplitude higher than the radical electron paramagnetic resonance linewidth. Data were gathered by applying four constant modulation amplitudes, where one was below 1/3 (Amod = 0.04 mT) of the radical linewidth (ΔBpp = 0.14 mT). Three other modulation amplitude values were used in this experiment, leading to undermodulated (Amod < 1/3 ΔBpp), partially overmodulated (Amod ~ 1/3 ΔBpp) and fully overmodulated (Amod > > 1/3 ΔBpp) projections. The advantages of an applied overmodulation condition were demonstrated in the study performed on a phantom containing four shapes of 1.25 mM water solution of 2, 2, 6, 6‐tetramethyl‐1‐piperidinyloxyl. It was shown that even when the overmodulated reference spectrum was used in the deconvolution procedure, as well as the projection itself, the phantom shapes reconstructed as images directly correspond to those obtained in undermodulation conditions. It was shown that the best SNR of the reconstructed images is expected for the modulation amplitude close to 1/3 of the projection linewidth, which is defined as the distance from the first maximum to the last minimum of the gradient‐broadened spectrum. For higher modulation amplitude, the SNR of the reconstructed image is decreased, even if the SNR of the measured projection is increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
童庆松  杨勇  连锦明 《电化学》2005,11(4):435-439
以L iOH.H2O和Mn(CH3COO)2.2H2O作原料,应用微波-固相两段烧结法合成具有L i4Mn5O12结构特征,组成为L i3.22Na0.569Mn5.78O12.0的锂离子电池正极材料.XRD分析表明,在380℃的后处理温度下,微波烧结前处理有利于生成纯L i4Mn5O12尖晶石相.充放电实验表明,在4.5~2.5V电压区间,新制样品的初始放电容量为132 mAh.g-1,100循环的容量衰减率为6.8%;4个月存放样的初始放电容量为122 mAh.g-1,100循环的容量衰减率为17.4%.表现出较好的充放电性能和循环寿命.微波烧结使样品的Mn-O键被加强.  相似文献   

17.
Summary We present profiles of the water gradient near the roots of bean plants measured by neutron beam analysis. Three kinds of bean plants were grown in cylindrical aluminum containers and were irradiated by thermal neutrons from a research reactor, JRR-3M, installed at Japan Atomic Energy Research Institute. After penetrating the sample, neutrons were converted to light by a fluorescent converter and the resulting photons were counted by a cooled CCD camera. Taking the projection images at different angles of the samples, CT images as well as simple projection images were constructed. It is seen here, for the first time, that water is significantly concentrated within the first 1 mm from the root surface in all three kinds of the plants. Soybean root grown under stress from added aluminum was studied by calculating root volumes and total root surface area from the spatial images. The suppression in root development as calculated from this nondestructive in-situ method correlates well with destructive techniques.  相似文献   

18.
Nanocrystalline corundum abrasive with mean crystal size of less than 100 nm was synthesised by sol–gel process via two-step sintering technique. A remarkable suppression of grain growth was achieved by controlling sintering temperature and taking advantage of sintering aids (MgO–CaO–SiO2) during the final stage of a two-step sintering process. The grain size of the high densification samples (>99% theoretical density) produced by two-step sintering method was about seven times less than that of the samples made by the conventional sintering technique. The microstructure of the samples was homogeneous without abnormal grain growth and the obtained corundum abrasive exhibited excellent abradability compared to conventional sintering methods.  相似文献   

19.
 Secondary ion mass spectroscopy (SIMS) is a powerful method for element distribution examination of conducting and semi-conducting surfaces at high spatial resolution and with a high sensitivity. Routine surface analysis produces about 8 to 15 images in a short time, each of which displays the intensity distribution of one mass, thus generating a multispectral SIMS image. Formation of occlusions, segregations, and the overall location of the elements relative to each other, are difficult to recognise when looking at n separate 2-D images. Image fusion is a process whereby images obtained from various sensors, or at different moments of time, or under different conditions, are combined together to provide a more complete picture of the object under investigation. The process of combining SIMS images may be viewed as an attempt to compensate for the inherent effect of SIMS to channel the information obtained from the sample into different images, corresponding to different element phases. The wavelet transform is a powerful method for fusion of images. This work covers the use of wavelet based fusion algorithms on multispectral SIMS images, evaluating the performance of different wavelet based fusion rules on different type of image systems and comparing the results to conventional fusion techniques. An aim of this study is to increase the information, i.e. the number of masses, which can be merged into one image in order to enhance the perception and interpretation of the SIMS surface images.  相似文献   

20.
Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050°C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号