首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interface reactions and film features of AZ91D magnesium alloy in pickling, activation and zinc immersion solutions have been investigated. The surface morphologies of the specimens were observed with scanning electron microscope (SEM). Electrochemical behaviors of AZ91D magnesium alloy in the baths of pickling, activation and zinc immersion were analyzed based on the open circuit potential (OCP) - time curves in various solutions. The results show that the corrosive rate in HNO3 + CrO3 or HNO3 + H3PO4 pickling solution was more rapid than in KMnO4 pickling-activation solution. Both α phase and β phase of the substrates were uniformly corroded in HNO3 + CrO3 or HNO3 + H3PO4 pickling solution, the coarse surface can augment the mechanical occlusive force between the subsequent coatings and the substrates, so coatings with good adhesion can be obtained. In HF activation solution, the chromic compound formed via HNO3 + CrO3 pickling was removed and a compact MgF2 film was formed on the substrate surface. In K4P2O7 activation solution, the corrosion products formed via HNO3 + H3PO4 pickling were removed, a new thin film of oxides and hydroxides was formed on the substrate surface. In KMnO4 pickling-activation solution, a film of manganic oxides and phosphates was adhered on the substrate surface. Zinc film was symmetrically produced via K4P2O7 activation or KMnO4 pickling-activation, so it was good interlayer for Ni or Cu electroplating. Asymmetrical zinc film was produced because the MgF2 film obtained in the HF activation solution had strong adhesive attraction and it was not suitable for interlayer for electroplating. However, the substrate containing compact MgF2 film without zinc immersion was fit for direct electroless Ni-P plating.  相似文献   

2.
The influence of the microstructure on the corrosion behaviour of a shape memory Cu-11.40Al-0.55Be (wt.%) polycrystalline alloy in 3.5% NaCl has been studied by microscopical examinations, spectroscopical and X-ray diffraction measurements, and electrochemical tests. Chloride environment can produce a dealuminization attack, and the corrosion behaviour is affected by the alloy microstructural conditions. After long times of immersion, the single β phase microstructure suffers localized corrosion in some regions but dealuminization is generalized on the whole surface. However, in the (β + γ2) microstructure, preferential dissolution of γ2 dendritic precipitates occurs, which seems to protect β matrix from dealloying.  相似文献   

3.
Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N2-treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N2-treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N2-treated specimen showing the highest resistance.  相似文献   

4.
Rough and porous Al2O3 coatings containing Ca and P were prepared on Ti–50.8 at.% Ni alloy by micro-arc oxidation (MAO) technique. The microstructure, elemental and phase composition of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS) and thin-film X-ray diffraction (TF-XRD). The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance and the nickel release of the coated and uncoated samples were examined by potentiodynamic polarization tests and immersion tests in Hank’s solution, respectively. The results show that the coatings are mainly composed of γ-Al2O3 crystal phase. The Ni content of the coatings is about 3.5 at.%, which is greatly lower than that of NiTi substrate. With increasing treatment time, both thickness and roughness of the coatings increase. The corrosion resistance of the coated samples is about two orders of magnitude higher than that of the uncoated NiTi alloy. The concentration of Ni released from coated NiTi samples is much lower than that of uncoated NiTi sample. It can be reduced in the factor of one-seventh compared with the uncoated NiTi sample after 3 weeks immersion in Hank’s solution.  相似文献   

5.
The corrosion products of a TM 23 bronze-leaded alloy (Cu 72%, Pb 15%, Zn 8% and Sn 5%) were obtained in a salt spray cabinet after exposition during 120 h and 1000 h. The products obtained were studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The major products of bronze-leaded corrosion were oxides and basic salts of Cu, CuCl2·3Cu(OH)2, and Pb, Pb(OH)Cl. The results can be attributed to a kinetic control of the corrosion reactions.  相似文献   

6.
ESCA examination on Ni-Cr alloys has shown that a thin passive film was formed after 24 h immersion in 0.1 M NaCl. The film contained only chromium oxide in the form of Cr2O3. Electrochemical techniques according to ASTM G59 and ASTM G5 were used for the determination of the relative corrosion rate of the alloys. Both Ni-10 wt. % Cr and Ni-20 wt. % Cr alloys showed a slightly higher corrosion rate than the Ni-40 wt. % Cr alloy.The present ESCA study of the Ni-Cr system is part of our programme which involves an examination of the four binary alloy systems Fe-Si, Cr-Co, Ni-Cr, and Mo-Ni [1]. The aim is to correlate the structure and composition of the passive films formed in 0.1 M NaCl to the corrosion behaviour in the same solution.  相似文献   

7.
Zn–Ni–TiO2 and Zn–TiO2 nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO2 nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the γ-Ni5Zn21 phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m−3 Na2SO4 solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn–Ni–TiO2 and Zn–TiO2 coatings were −1.32 and −1.51 V (vs. Hg/Hg2SO4), respectively, and changed to −1.10 and –1.49 V (vs. Hg/Hg2SO4) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal–TiO2 nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn–Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn–Ni–TiO2 and Zn–TiO2 nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn–Ni–TiO2 and Zn–TiO2 deposits. After 24 h of immersion in the sulphate solution, the Zn–Ni–TiO2 coating has the highest corrosion stability due to the double-protective action created by the deposit’s surface enrichment in Ni plus the higher amount of corrosion products.  相似文献   

8.
ESCA examination of films formed on Cr-Co alloys after immersion in 0.1M NaCl for 24 h has shown that the thickness of passive films decreased with an increase in chromium content. Surface films consisted of chromium and cobalt oxides as Cr2O3 and CoO. The amount of CoO in the surface film of the alloy was decreased with an increase in chromium but Cr2O3 was found at a greater depth in the passive film at any composition. Cr2O3 was a major component of the surface film when the chromium content in the alloy was 10% or higher. Electrochemical techniques according to ASTM G59 and ASTM G5 were used for the determination of the relative corrosion rate. Both Co-10 wt.% Cr and Co-30 wt.% Cr alloys investigated showed a lower corrosion rate than the Co-5 wt.% Cr alloy. Corrosion rate measured could be correlated to the surface film composition and structure as determined by ESCA.  相似文献   

9.
The corrosion products on steels exposed at two sites in Campeche, México and one site at Kure Beach, USA, have been investigated to determine the extent to which different marine conditions and exposure times control the oxide formation. The corroded coupons were analyzed by Mössbauer, Raman and infrared spectroscopy as well as X‐ray diffraction, in order to completely identify the oxides and map their location in the corrosion coating. The coating compositions were determined by Mössbauer spectroscopy using a new parameter, the relative recoilless fraction (F-value) which gives the atomic fraction of iron in each oxide phase from the Mössbauer sub‐spectral areas. For short exposure times, less than three months, an amorphous oxyhydroxide was detected after which a predominance of lepidocrocite (γ-FeOOH), and akaganeite (β-FeOOH) were observed in the corrosion coatings with the fraction of the later phase increasing at sites with higher atmospheric chloride concentrations. The analysis also showed that small clusters of magnetite (Fe3O4), and maghemite (γ(Fe2O3), were seen in the micro-Raman spectra but were not always identified by Mössbauer spectroscopy. For longer exposure times, goethite (α-FeOOH), was also identified but little or no β-FeOOH was observed. It was determined by the Raman analysis that the corrosion products generally consisted of inner and outer layers. The protective layer, which acted as a barrier to slow further corrosion, consisted of the α-FeOOH and nano-sized γ-Fe2O3 phases and corresponded to the inner layer close to the steel substrate. The outer layer was formed from high γ-FeOOH and low α-FeOOH concentrations.  相似文献   

10.
The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Mössbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.  相似文献   

11.
A novel Ni-B/TiC composite coating was synthesized by ultrasonic-assisted direct current electrodeposition. Ultrasonic technology was adopted to prevent the agglomeration of nanoparticle, improve the structure and corrosion resistance, using an ultrasonic bath at frequency 40 KHz and acoustic power 300 W. The influences of current density and deposition time on its structure and electrochemical behaviors were studied. Under ultrasonic dispersion, the composite coatings are smooth, compact with protrusion structure sparsely distributed on it. The average roughness (Sa) was about 13.6–26.1 nm. The crystallite size is 10–21 nm. The preferred orientation is Ni (1 1 1) texture. EIS results indicated that the corrosion resistance was greatly improved by ultrasonic-assisted method. The corrosion mechanism is consistent with one-time constant EEC model of Rs(CPEdlRct). With the increase of immersion time, the Rct of the composite coating often first increased and then decreased. Under ultrasonic, current density 2 A dm−2 and deposition time 20 min were the appropriate parameters for the optimal corrosion resistance and excellent long-term electrochemical stability in 3.5 wt% NaCl corrosive solution. This coating shows good application prospect for corrosion protection in aggressive environment.  相似文献   

12.
In this study, conversion electron Mössbauer spectroscopy (CEMS) has been utilized for identifying the nature of initial corrosion products formed on the surface of steel under different environments and measurement of relative thickness of corrosion products formed. CEMS studies on mild steel exposed under different environments, viz. mild steel sprayed with (1) distilled water (2) 3% NaCl and (3) mild steel exposed to SO2 were carried out. The initial stable product of corrosion is found to be γ-FeOOH, which will transform into other oxyhydroxides and oxides, depending on environments. The mechanisms for the corrosion processes occurring under different conditions are also discussed.  相似文献   

13.
ABSTRACT

The compound 6-methylquinoxalin-2(1H)-one (Q-CH3) was synthesized, and its inhibiting action on the corrosion of mild steel in 1M HCl was investigated by various corrosion-monitoring techniques: electrochemical and weight-loss measurements. Results showed that this compound has fairly good inhibiting properties for steel corrosion in acidic medium, with efficiencies of around 97% at a concentration of 10?2 M. The protection efficiency of this inhibitor decreases slightly with the rise of temperature, and it is improved with the immersion time.  相似文献   

14.
The corrosion reaction of four Fe–Mn–Al alloys exposed to a cycling, dry–humid, SO2 (0.001% by volume) polluted atmosphere was studied. ICEMS, XPS, AES-SAM and transmission Mössbauer spectroscopy at different temperatures were employed to characterize the corrosion products. The analytical results indicate that (i) ferrihydrite is the main component of the rust; (ii) there is an abundant presence of Mn2+ and SO3 2–/SO4 2– on the top of the corrosion layer, the concentration of SO4 2– increasing with the number of cycles; and (iii) the magnetic hyperfine pattern exhibited by the series of low-temperature spectra of the rust is quite different from that observed in the rust formed under similar corrosive environments on iron and weathering steel. This latter finding is correlated with a slow rate of transformation of the Fe3+ species formed at the early stages of corrosion into -FeOOH, the usual final product of this type of corrosion processes. The sulphate anions, abundant inside the electrolyte during the wet periods, could be incorporated to the ferrihydrite structure being responsible for the Mössbauer spectral pattern recorded from the corrosion products at low temperatures.  相似文献   

15.
Black and gray microarc oxidation (MAO) coatings were prepared in a phosphate electrolyte with and without K2TiF6 on 2A70 aluminum alloy, respectively. Voltage–time curves were recorded during the MAO process. The effects of K2TiF6 on the morphology, composition, abrasive resistance and corrosion resistance of MAO coatings were investigated. The results showed that the MAO coating produced in the electrolyte with K2TiF6 was thicker, and more uniform than that produced in the electrolyte without K2TiF6. Ti was detected in the surface of the MAO coating formed in the electrolyte with K2TiF6. The results of abrasive resistance and corrosion resistance showed that the MAO coating formed in the electrolyte with K2TiF6 exhibited better abrasive resistance and corrosion resistance.  相似文献   

16.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

17.
Highly corrosion-resistant nanocrystalline Mg-Zn-Y-Al multi-phase alloys have been prepared by consolidation of rapidly solidified (RS) ribbons. The relation between corrosion behavior and microstructure evolution of Mg-Zn-Y-Al alloys with a long period stacking ordered phase has been investigated. In order to clarify the influence of rapid solidification on the occurrence of localized corrosion such as filiform corrosion, several Mg96.75Zn0.75Y2Al0.5 (at.%) alloys with different cooling rates are fabricated by the gravity casting, copper mould injection casting and melt-spinning techniques and their corrosion behavior and microstructures are examined by the salt water immersion test, electrochemical measurements, GDOES, XRD, SEM and TEM. To clarify the effect of aluminium addition on the improvement in corrosion resistance of the alloys, several Mg97.25−xZn0.75Y2Alx alloys with different aluminium contents are fabricated by consolidating RS ribbons and the formation of corroded films on the Mg-Zn-Y-Al alloys have been investigated. Rapid solidification brings about the grain refinement and an increase in the solid solubility of zinc, yttrium and aluminium into the magnesium matrix, enhancing microstructural and electrochemical homogeneity, which in turn enhanced corrosion resistance. The addition of aluminium to magnesium can modify the structure and chemical composition of surface films and improves the resistance to local breakdown of the films.  相似文献   

18.
Surface species formed on Cu2O and CuO substrates, which have been immersed in aqueous benzotriazole (BTA), have been characterized using X-ray photoelectron spectroscopy (XPS or ESCA). Copper(2p), (3d) and nitrogen(1s) spectra indicate that a 3-minute immersion of a Cu2O substrate in aqueous BTA (0.017 M, pH 5.25, 60°C) results in the formation of both Cu+BTA and Cu2+BTA surface compounds while neither of these species are formed on CuO substrates treated in the same manner. The immersion of CuO in aqueous BTA for times greater than ~ 4 hours does, however, result in the formation of a Cu2+BTA surface compound. Copper(2p) spectra of Cu2O substrates which have been immersed in aqueous BTA for varying periods of time indicate that the Cu+BTA surface compound is formed initially and is gradually oxidized to the Cu2+BTA surface compound as the immersion time in aqueous BTA is increased. Copper(2p) and (3d) spectra, along with published electron escape depth information, indicate that the Cu+BTA films, initially formed on Cu2O surfaces during 3-minute immersions, are at least ~ 15 ± 7 Å thick whereas the Cu2+BTA films, formed by surface oxidation, grow to a maximum thickness of less than ~ 7 ± 3 Å for immersion times of ? 24 hours.  相似文献   

19.
Iron-boride layers on low-carbon steel were produced by thermochemical diffusion process. The surface interaction products: Fe2B, FeB, FeBx (x>1) and a solid solution of iron in boron were identified by surface Mössbauer spectroscopy (CEMS and XMS). Samples of original and boronized steel were subjected to corrosion process by immersion in HCl (0.1 N) solution for 150 h. While the steel sample was strongly corroded, none corrosion product was found on the boronized sample surface. However, significant changes in relative percentages of the various iron boride phases were detected. Also, samples of original and boronized steel were subjected to oxidation process by heat-treatment in air at 300°C for 8 h and 500°C for 4 h. At 300°C, while bulk Fe3O4 and -Fe2O3 were formed on the steel surface, none iron oxide was detected on the boronized surface. At 500° C, while only pure bulk -Fe2O3 was detected on the steel surface, a particle size distribution of-Fe2O3, with particle size of about 100 Å, was probably formed on the boronized surface, as evidenced by CEMS.  相似文献   

20.
Mossbauer spectroscopy (MBS) and X-ray diffraction (XRD) have been used to establish the composition of the rust layer formed on weathering steel and pure iron under several wet-dry cycles in a SO2-polluted atmosphere. FeSO3−3H2O, FeSO4−4H2O, and poorly crystalline ferrihydrite were identified as the only corrosion products. The Mossbauer spectrum of FeSO3−3H2O is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号