首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LaserTrasformationHardeningforMaterialasMudPumpLinerTANGFurong;MADeyan;PENGShengshang(DepartmentofMechanicalEngineering,south...  相似文献   

2.
In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.  相似文献   

3.
In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ?-Cu precipitates on the dislocation movement. As massive ?-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.  相似文献   

4.
The life of structural members that experience cyclic loading is improved by the introduction of surface compressive residual stresses. A high-pressure oil jet is used for the introduction of surface compressive residual stresses in aluminum alloys, AA6063-T6 and AA6061-T4. The peening machine designed and developed in the laboratory is capable of generating high pressures using hydraulic oil. The magnitude of residual stress developed depends upon the stand-off distance and yield strength of the material. A hardened layer up to a depth of about 350 μm was developed in the materials investigated. The residual stresses and surface hardening induced are comparable to that produced by other peening processes. An analytical model is proposed to predict the impact pressure.  相似文献   

5.
An attempt has been made to mathematically predict the optimum conditions of laser surface hardening (LSH) of austempered ductile iron (ADI) that can ensure a predominantly martensitic microstructure and preclude partial/complete dissolution of graphite nodules in the laser hardened zone during laser irradiation. The exercise involves prediction of the thermal profile (using the Ashby and Easterling model), and consequently, the carbon diffusion profile around the graphite nodules at different depths from the surface for the given conditions of LSH. Microstructural investigations have been carried out by optical and scanning electron microscopy to study the morphology, shape and width of the partially/completely melted graphite nodules as a function of the LSH parameters. Finally, the predicted maximum width of the melted zone around the graphite nodules is compared with the relevant experimental data to validate the proposed model.  相似文献   

6.
Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm.Results using pulse densities of 2500 pulses/cm2 in 6061-T6 aluminum samples and 5000 pulses/cm2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced −1600 MPa for 6061-T6 Al alloy, and −1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

7.
Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm2 and 5000 pulses/cm2 in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

8.
Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe3C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.  相似文献   

9.
球墨铸铁QT600-3激光相变硬化数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用商业有限元软件ProCAST,建立了激光相变硬化温度场的3维数值模拟模型,对球墨铸铁QT600-3进行激光相变硬化的数值模拟研究,计算了表面淬火的温度场,根据温度场预测了硬化层的深度和宽度。激光功率在800~1 000 W之间,激光扫描速度在2.000~2.667 mm/s之间,光斑直径在4~5 mm之间时,计算得到的硬化层深度在0.20~0.64 mm之间,硬化层宽度在2.0~3.7 mm之间。球墨铸铁数值模拟结果与试验基本吻合,两者变化趋势一致。  相似文献   

10.
Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm2 and 32 pulses/mm2. Residual stress evaluation based on X-ray diffraction sin2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.  相似文献   

11.
A nanostructured surface layer was formed on a carbon steel by means of surface mechanical attrition treatment (SMAT). The microstructure of the surface layer of the SMATed sample was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness and residual stress distribution along the depth from the SMATed surface layer were measured at the same time. Fatigue behaviors of the carbon steel subjected to the SMAT process were investigated. A nanostructured layer with average grains size of ∼12.7 nm was formed, of which microhardness is more than twice as high as that in matrix and residual compressive stress can reach about −400 MPa with maximum depth of ∼600 μm. The fatigue strength of as-received sample is 267 MPa and that of SMATed sample is 302 MPa based on fatigue life 5 × 106 cycles. The SMAT process has improved the fatigue strength by as much as 13.1% for the carbon steel. It is shown that the SMAT is an effective method to render the material with the features, such as a nanostructured and work-hardened surface layer as well as compressive residual stresses, which can pronouncedly improve the fatigue strength of the carbon steel.  相似文献   

12.
Raman scattering studies were performed on hot-wall chemical vapor deposited (heteroepitaxial) silicon carbide (SiC) films grown on Si substrates with orientations of (1 0 0), (1 1 1), (1 1 0) and (2 1 1), respectively. Raman spectra suggested that good quality cubic SiC single crystals could be obtained on the Si substrate, independent of its crystallographic orientation. Average residual stresses in the epitaxially grown 3C-SiC films were measured with the laser waist focused on the epilayer surface. Tensile and compressive residual stresses were found to be stored within the SiC film and in the Si substrate, respectively. The residual stress exhibited a marked dependence on the orientation of the substrate. The measured stresses were comparable to the thermal stress deduced from elastic deformation theory, which demonstrates that the large lattice mismatch between cubic SiC and Si is effectively relieved by initial carbonization. The confocal configuration of the optical probe enabled a stress evaluation along the cross-section of the sample, which showed maximum tensile stress magnitude at the SiC/Si interface from the SiC side, decreasing away from the interface in varied rate for different crystallographic orientations. Defocusing experiments were used to precisely characterize the geometry of the laser probe in 3C-SiC single crystal. Based on this knowledge, a theoretical convolution of the in-depth stress distribution could be obtained, which showed a satisfactory agreement with stress values obtained by experiments performed on the 3C-SiC surface.  相似文献   

13.
Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205–226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.  相似文献   

14.
Laser treatment of pre-prepared zirconia surface is carried out. The pre-prepared surface, prior to laser treatment, consists of 50 μm carbon film and 7% titanium carbide particles, which are imbedded in the carbon film. The microstructural and morphological changes in the laser treated surface layer are examined using optical and scanning electron microscopes, energy dispersive spectroscopy, and X-ray diffraction. The fracture toughness of the laser treated surface is measured and the residual stress formed at the surface vicinity is determined from the X-ray diffraction technique. It is found that the microhardness of the laser treated surface increased slightly due to the dense layer formed at the surface vicinity. However, the laser treatment process reduces the fracture toughness of the surface due to improved surface hardness and the residual stress formed in the surface vicinity.  相似文献   

15.
Laser surface hardening makes use of the rapid and cooling cycles produced on metals surfaces exposed to a scanning laser beam without affecting the bulk of the sample. Mechanical and chemical properties of the surface can be enhanced through the metallurgical transformations that take place during the mentioned thermal cycles. Steels and cast irons are the usual materials to be hardened by laser and recently the high power diode lasers (HPDL) became the appropriate tool to carry out this process. In this work, some systematic experiments have been carried out to harden AISI 1045 surface samples by a cw (HPDL) working at different power levels (470, 760 W). The main processing parameters (scanning velocity and density power of the laser beam) were tuned from the prediction realized by the numerical (ANSYS) analysis of the heat conduction involved in the process. Such analysis allowed us to put in evidence the variation of the temperature and the cooling rate of the steel sample surface, affecting the uniformity of the demanding mechanical properties of the surface. In this way, a close-loop temperature control of the surface was justified in order to keep the hardness value within the range required. The formation of martensite phase in the laser treated superficial zone confirmed the hardening of the steel.  相似文献   

16.
Pack boronizing of pure vanadium was performed at 1100 °C for 4, 8, 12 and 16 h under a controlled atmosphere. Characterization of the boride formed on the surface of pure vanadium was carried out by metallographic techniques, profilometry, SEM-EDS, XRD and microhardness measurements. The metallographic studies revealed that a single boride layer with dense, compact and relatively smooth morphology was formed on the surface of pure vanadium. The interface between boride layer and base metal was wavy in nature. The formation of only the VB2 phase on pure vanadium was confirmed by surface and cross-sectional XRD analysis. The microhardness of the boride layer was approximately 3700 HV for all boriding times. Fracture toughness of the boride layer was evaluated using Vickers indentation, giving the value of 2.1-5.9 and 1.7-3.4 MPa m1/2 for Palmqvist and median/radial approaches, respectively. Thickness of the boride layer increased almost parabolically from about 23 to 50 μm with boriding time. Surface roughness of the coating was relatively increased from approximately 0.58 to 2.25 μm by boriding duration.  相似文献   

17.
In this study borocarburizing was used for the formation of gradient boride layers. The microstructure, microhardness profiles and the low-cycle fatigue strength during radial compression of carburized, borided and borocarburized layer have been compared. The gradient borocarburized layers, formed by boriding of previously carburized substrate, are characterized by two zones in diffusion layer: iron borides zone and carburized zone. After borocarburizing the iron borides show a tendency towards a loss of the needle-like nature. The hardness gradient between iron borides and low-carbon substrate is reduced. The microhardness beneath the iron borides decreases to 900 HV in carburized zone and next gradually decreases to 400–450 HV in the core of steel. The highest resistance to low-cycle fatigue during radial compression has been observed in case of carburized and through hardened layer. The fatigue strength of gradient boride layer (borocarburized and through hardened) is a little lower. The typical borided and through hardened layer is characterized by the lowest resistance to low-cycle fatigue during radial compression. The profiles of stresses after boriding and borocarburizing have been compared. The obtained profile of stresses and the lower values of tensile stresses at the surface can be the reason for higher frictional wear resistance of borocarburized layers and for higher fatigue strength of these layers, too.  相似文献   

18.
A more noble and biocompatible Ti alloy was achieved at fluence of 140 J cm−2 where the implant indicated a higher degree of hardness (825HV), higher corrosion resistance (−0.21 V) and highest hydrophilicity (i.e. θc = 37°) compared with 70° of the control sample. These values corresponded to 58 and 39 mN m−1 of surface tension respectively. The laser treated samples at 140 J cm−2 showed higher wettability characteristics than mechanically roughened surface. Cell growth and their spreading condition in a specific area were analyzed by SEM and Image J Program software. Clearly, more cells were attached (1.2 × 105) to and spread (488 μm2) over the surface at 140 J cm−2 than in any other condition. Pathologically, the treated samples indicated no sign of infection.  相似文献   

19.
180 femtoseconds (1 kHz) and 10 picoseconds (1-50 kHz) ultrafast laser micro-structuring of the metals Ti alloy, Al and Cu have been studied for the purpose of industrial application. The effects of some key laser operating parameters were investigated. The evolution of surface morphology revealed that laser pulses overlap in a range around the spatial FWHM can help to achieve optimal residual surface roughness. While observed ablation rate (unit: μm3 per pulse) changed dramatically with repetition rate due to the combined effects of plasma absorption, residual thermal energy and phase transition, higher throughput can be achieved with higher repetition rate. This study also indicated that residual surface roughness is almost independent of repetition rate at 10 ps temporal pulse length. The ablation depth is approximately proportional to the number of overscan; however, machining accuracy deteriorates, especially for femtosecond laser processing and metals with low thermal conductivity and short electron-phonon coupling time.  相似文献   

20.
We investigate the influence of laser treatment on the formation of residual stresses relative to the changing structure-phase composition in the surface layers of high-chromium cast iron with 16% chromium. We show that appreciable tensile stresses are produced in the region of the laser action and that their distribution depends on whether the laser treatment was or was not accompanied by surface melting. The produced residual stresses are responsible for the formation of a large number of cracks. Preheating to 400°C lowers the level of the tensile residual stresses and prevents crack formation. A pellet stream acting on the surface produces cold-work hardening layers in which the tensile stresses change into compressive ones. The depth, hardness, and magnitude of the compressive residual stresses depend on the method used to work harden the cast iron and on the angle of attack of the pellet as it acts on the surface.Translation of Preprint No. 195, Lebedev Institute of Physics, Academy of Sciences of the USSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号