首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, we report a simple and efficient method to prepare high-quality nanocrystalline ZnO films by electrophoretic deposition. Absorption spectrum and transmission electron microscope image indicated that the average size of ZnO nanoparticles is about 9.5 nm. A strong ultraviolet emission peak at 384 nm is observed and the deep-level emission band is barely observed at room temperature. X-ray diffraction pattern revealed that the ZnO film has a polycrystalline hexagonal wurtzite structure. The Raman spectrum showed a typical resonant multi-phonon process within the ZnO film. The frequency shift of 1 LO phonon was about 583 cm−1.  相似文献   

2.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

3.
A p-ZnO:N/n-GaN:Si structure heterojunction light-emitting diode (LED) is fabricated on c-plane sapphire by full metal organic chemical vapor deposition (MOCVD) technique. The p-type layer with hole concentration of 8.94×1016 cm−3 is composed of nitrogen-doped ZnO using NH3 as the doping source with subsequent annealing in N2O plasma ambient. Silicon-doped GaN film with electron concentration of 1.15×1018 cm−3 is used as the n-type layer. Desirable rectifying behavior is observed from the current-voltage (I-V) curve of the device. The forward turn on voltage is about 4 V and the reverse breakdown voltage is more than 7 V. A distinct ultraviolet (UV) electroluminescence (EL) with a dominant emission peak centered at 390 nm is detected at room temperature from the heterojunction structure under forward bias conditions. The origins of the EL emissions are discussed in comparison with the photoluminescence (PL) spectra.  相似文献   

4.
ZnO thin films were prepared by pulsed laser deposition at room temperature on glass substrates with oxygen pressures of 10-30 Pa. The structural, electrical, and optical properties of ZnO films were studied in detail. ZnO films had an acceptable crystal quality with high c-axis orientation and smooth surface. The resistivity was in the 102 Ω cm order for ZnO films, with the electron concentration of 1016-1017 cm−3. All the films showed a high visible transmittance ∼90% and a high UV absorption about 90-100%. The UV emission ∼390 nm was observed in the photoluminescence spectra. The oxygen pressures in the 10-30 Pa range were suitable for room temperature growth of high-quality ZnO films.  相似文献   

5.
ZnO films prepared by radio frequency magnetron sputtering were singly or sequentially implanted with 120 keV Fe ions at a fluence of 5 × 1016 ions/cm2 and 20 keV C ions at a fluence of 3 × 1015 ions/cm2. Magnetic and optical properties as well as structures of the films have been investigated using various techniques. Magnetic measurements show that the as-deposited ZnO film presents room temperature ferromagnetism. Single Fe or C ion implantation has no contribution to enhancement in the film magnetism, while magnetic moment increases distinctly in the Fe and C ions sequentially implanted film. Results from structural measurements reveal that Fe nanoparticles are formed in the Fe singly implanted ZnO film. The post C implantation induces dissolution of Fe nanoparticles and promotes Fe atoms to substitute Zn atoms in the lattice. Based on the structural results, the effect of magnetic enhancement has been tentatively interpreted.  相似文献   

6.
ZnO [0 0 0 1] crystals were irradiated at room temperature with Tb+ ions of 400 keV with fluences from 1×1016 to 2×1017 cm−2. The implanted layer was examined by several methods, including radioluminescence (RL), Rutherford backscattering spectrometry (RBS) and optical spectroscopy. The optical extinction spectra were simulated using Mie scattering theory. Absorption spectra predicted by Mie theory for particles of decreasing diameter were compared with those obtained experimentally. Some qualitative agreement between theoretical and experimental data was achieved. It was also shown that the intensities of the characteristic green emission bands associated with Tb produced by 5D47Fj=5,4 transitions have increased about 8 times after annealing. Optical spectroscopy and radioluminescence data have revealed that the ion implantation is a promising tool for synthesizing Tb nanoparticles in the ZnO surface. The Tb nanoparticles exhibit a rather weak plasma resonance.  相似文献   

7.
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW−1 and 7.102 × 10−3 cm3 GW−2, respectively. The two- and three-photon cross sections were calculated to be 1.189 × 10−51 cm4 s and 1.040 × 10−80  cm6 s2, respectively.  相似文献   

8.
Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films have been prepared by pulsed laser deposition. The introduction of Li and N was confirmed by secondary ion mass spectrometry measurements. The structural, electrical, and optical properties as a function of growth temperature were investigated in detail. The lowest room-temperature resistivity of 3.99 Ω cm was achieved at the optimal temperature of 450 °C, with a Hall mobility of 0.17 cm2/V s and hole concentration of 9.12 × 1018 cm−3. The ZnO:(Li,N) films exhibited good crystal quality with a complete c-axis orientation, a high transmittance (about 90%) in the visible region, and a predominant UV emission at room temperature. The two-layer-structure p-ZnO:(Li,N)/n-ZnO homojunctions were fabricated on a sapphire substrate. The current-voltage characteristics exhibited the rectifying behavior of a typical p-n junction.  相似文献   

9.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

10.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

11.
In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.  相似文献   

12.
Ag-N doped ZnO film was synthesized by ion beam assisted deposition and its electrical properties and annealing property were investigated. The films remained p-type even after annealing at 400 °C in air for 10 min. While the annealing temperature went up to 500 °C, the conduction type of these films shifted from p-type to n-type. The p-type ZnO film revealed low resistivity (0.0016 Ω cm), low Hall mobility (0.65 cm2 V−1 s−1) and high carrier concentration (5.8 × 1020 cm−3). ZnO p-n homojunction consisting of a p-type layer (Ag-N doped ZnO film) and an n-type layer (In-doped ZnO film) had been fabricated by ion beam assisted deposition. With electrical measurement, its current-voltage curve had a typical rectifying characteristic with current rectification ratio of 25 at bias ±5 V and a reverse current of 0.01 mA at −5 V. The depletion width was estimated 3.8 nm by using p-n junction equation.  相似文献   

13.
Terbium (1 mol%) doped ZnO-SiO2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb3+ ions in SiO2:Tb3+ and ZnO-SiO2:Tb3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb3+ emission was measured at ∼320 nm in both SiO2:Tb3+ and ZnO-SiO2:Tb3+. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO2:Tb3+ and a subsequent increase in 542 nm emission from the Tb3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb3+ ions. The PL and CL properties of ZnO-SiO2:Tb3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb3+ ions are discussed.  相似文献   

14.
B-doped ZnO thin films have been fabricated on fused quartz substrates using boron-ZnO mosaic target by pulsed-laser deposition technique, and the mechanical properties have been studied by nanoindentation continuous stiffness measurement technique and transmission electron microscope (TEM). Nanoindentation measurement revealed that the hardness of B-doped ZnO films, 9.32 ± 0.90 to 12.10 ± 1.00 GPa, is much greater than that of undoped ZnO films and very close to that of traditional semiconductor Si. The mean transmittance (%) is larger than 81% in the visible range (380-780 nm) for all the films, and the Hall effect measurement showed that the carrier density is around 2 × 1020 cm−3 and the resistivity lower than 3 × 10−3 Ω cm. TEM characteristics show undoped thin films have more amorphous area between grains while the B-doped ZnO films have thin grain boundaries. We suggest that the grain boundaries act as the strain compensation sites and the decrease in thickness of grain boundaries enhances the hardness of the B-doped ZnO films.  相似文献   

15.
In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH to Zn2+ ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H+ and OH in the solution.  相似文献   

16.
Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO2) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar+ laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 °C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures.  相似文献   

17.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

18.
In the present study, we report the photoluminescence (PL) study of nanoparticles of ZnS implanted with Cu+ ions at the doses of 5×1014, 1×1015 and 5×1015 ions/cm2 and annealed at 200 and 300 °C. The photoluminescence spectra of the samples implanted at lower doses of 5×1014 and 1×1015 ions/cm2 and annealed at 200 and 300 °C showed peaks at around 406, 418 and 485 nm. The PL emission peak at 485 nm was attributed to the transition of electrons from conduction band of ZnS to the impurity level formed by the implanted Cu+ ions. In the PL spectrum of the sample implanted at the highest dose of 5×1015 ions/cm2, in addition to the emission peaks observed in the PL spectra of the samples implanted at lower doses, a peak at around 525 nm, the intensity of which decreased with increase in the annealing temperature, was observed. The emission peak at 525 nm was attributed to the transitions between sulfur and zinc vacancy levels. The full width at half maximum (FWHM) of the emission peak at 406 nm was observed to decrease with increase in annealing temperature, indicating lattice reconstruction. The observation of copper ion impurity related peak at 485 nm in the PL spectra of samples of the present study indicated that the doping of copper ions into the ZnS lattice is achievable by implanting Cu+ ions followed by annealing.  相似文献   

19.
In this paper we study nanocrystalline zinc oxide thin films produced by oxidation of electrodeposited zinc nanolayers on a monocrystalline p-Si(1 1 1) substrate.The electrolyte used is ZnCl2, an aqueous solution of 4 × 10−2 mol/l concentration. Several deposits were made for various current densities, ranging from 13 mA/cm2 to 44 mA/cm2, flowing through the solution at room temperature. A parametric study enabled us to assess the effect of the current density on nucleation potential and time as well as zinc films structure. The grazing incidence X-ray diffraction (GIXD) revealed that both Zn and ZnO films are polycrystalline and nanometric. After 1-h oxidation of zinc films at 450 °C in the open air, the structural analyses showed that the obtained ZnO films remained polycrystalline with an average crystal size of about 47 nm and with (1 0 0), (0 0 2) and (1 0 1) as preferential crystallographic orientations.  相似文献   

20.
Arsenic doped p-type ZnO thin films were grown on sapphire substrate by magnetron sputtering. As grown films reveal p-type conduction confirmed by Hall-effect and photoluminescence measurements. The p-type film with a hole concentration of 2.16× 1017 cm−3, mobility of 1.30 cm2/V.s and resistivity of 22.29 Ω-m were obtained at substrate temperature of 700 °C. ZnO homojunction synthesized by in-situ deposition of As doped p-ZnO layer on Al doped n-ZnO layer showed p-n diode like characteristics. X-ray pole figure and Transmission Electron Microscope studies confirm epitaxial nature of the films. Photoluminescence results exhibit the peaks associated with donor acceptor pair emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号