首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Cobalt hydroxide is synthesized through a novel radiation-induced route using a cobalt nitrate hexahydrate isopropanol solution by irradiating 60Co γ-rays. The as-prepared product shows a layer-structured mesoporous morphology with an average size of 250 nm. Crystalline property analysis exhibits the presence α-Co(OH)2 as a predominant phase with a tiny amount of secondary phases of β-Co(OH)2 and CoO. X-ray photoelectron spectroscopy discloses the existence of Co as Co(OH)2 and CoO with a stoichiometric ratio of 76.7:23.3. In addition, the supercapacitive properties of the product are investigated using cyclic voltammetry and impedance spectroscopy in 1M KOH aqueous solution, showing a maximum capacitance value of 246.7 F g−1 at a scan rate of 5 mV s−1.  相似文献   

2.
In this paper we report a “bottom up” approach to synthesize β-Ni(OH)2 nanoflakes using novel successive ionic layer adsorption and reaction (SILAR) method. Ni(OH)2 thin films have been deposited on glass substrate using aqueous alkaline nickel chloride as nickel ion source and double distilled water maintained at 353 K temperature as hydroxyl ion source. The structural, surface morphological, optical and electrical properties of films are examined. The nanocrystallinity and β-phase of Ni(OH)2 are confirmed by X-ray diffraction and FT-IR studies. Scanning electron microscope study revealed microporous and random distribution of well up grown interlocked nanoflakes. Optical absorption studies show wide optical band gap of 3.26 eV for β-Ni(OH)2. The electrical properties revealed that β-Ni(OH)2 has negative temperature coefficient of resistance with p-type semiconducting behaviour. The electrochemical property studied by cyclic voltametry in 2 M KOH electrolyte solution revealed pseudo capacitive behaviour, when β-Ni(OH)2 thin film employed as working electrode in three electrode electrochemical cell with platinum as counter electrode and saturated calomel as reference electrode. The specific capacitance of 350 F g−1 is obtained with nanoflake like morphology.  相似文献   

3.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

4.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

5.
Zn/Zn5(OH)8Cl2·H2O flower-like nanostructures was electrodeposited on the coated Zn with poly (N-methyl pyrrole) in 0.1 M Zn (NO3)2 and 0.1 M KCl solution. The morphology and the structure of the Zn/Zn5(OH)8Cl2·H2O were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction analysis (XRD). The FT-IR results showed special peaks at 908 and 728 cm−1 related to Zn5(OH)8Cl2·H2O. The FESEM results indicated that Zn/Zn5(OH)8Cl2·H2O consists of a flower-like nanostructure and these flower-shaped structures contain many shaped nanopetals with the thickness of 27.8 nm. The XRD result confirmed that the major phase of electrodeposited product in 0.1 M KCl as supporting electrolyte was Zn5(OH)8Cl2·H2O. The ability of PMPy to create a thin film and the existence of several pores in its matrix act as a mold for the growth of Zn/Zn5(OH)8Cl2·H2O flower-like nanostructure. The trapping of Cl and OH within pores can be considered as the reason for the formation of flowerlike Zn/Zn5(OH)8Cl2·H2O nanostructures in 0.1 M KCl.  相似文献   

6.
Solid state mechanical activation method was applied for surface modification of LiMn2O4 by Li-M-O (M = Co, Co+Ni) and for preparation of composite mixed LiMn2O4/LiCoO2 cathode materials. Pristine LiMn2O4 was ground with correspondent precursors (for coating) or with LiCoO2 (for composites) in high-energy planetary mills and then heat treated at different temperatures. As prepared materials were studied by XRD, 7Li MAS NMR spectroscopy, XPS, SEM and electrochemical cycling. It has been shown that both ‘core-shell’ and composite materials prepared by mechanochemical process are characterized by superior electrochemical performance due to smaller particles and chemical modification of LiMn2O4.  相似文献   

7.
Eu3+-doped β-Ga2O3 nanofibers were fabricated by electrospinning. The influence of Eu3+ concentration on the photoluminescence properties of the obtained nanofibers was investigated. The morphology and structure of β-Ga2O3:Eu3+ were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectra. The diameter of the Eu3+-doped β-Ga2O3 nanofibers was in the range of 180-300 nm. When the β-Ga2O3:Eu3+ nanofibers were excited by 325 nm wavelength, the main emission peak of the samples was 620 nm (5D07F2), which corresponded to a typical red emission (5D07Fj (j = 1, 2, 3, 4) intra-4f transitions of Eu3+ ions). In addition, the concentration quench effect and energy transfer mechanism in β-Ga2O3:Eu3+ were also discussed.  相似文献   

8.
Yuhai Hu 《Surface science》2007,601(21):5002-5009
The influence of pre-dosed O2 on the catalytic reduction of NO with 13C2H5OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). We show that the oxidation of 13C2H5OH with O2 is a very effective reaction, occurring at 150 K and giving rise to acetate. The presence of NO does not lead to any evident oxidation of 13C2H5OH irrespective of the annealing temperature. For the case of O2 + 13C2H5OH + NO co-adlayers, oxidation of 13C2H5OH also takes place at 150 K. However, no new surface species that are supposed to be an intermediate for the production of N2 are detected.The influence of O2 on the production and desorption of N2 is intimately related to both O2 and 13C2H5OH coverage. The presence of pre-dosed O2 does not greatly promote N2 desorption. In fact, N2 desorption is suppressed quantitatively with increasing O2 coverage, after which unreacted, or left-over O atoms appear and remain on steps. It is concluded that the presence of pre-dosed O2 does not play a role of activating reactants in the catalytic reduction of NO with 13C2H5OH on the surface of Pt(3 3 2).  相似文献   

9.
NbTi0.5Ni0.5O4 (NTNO) has been prepared using solid state synthesis and investigated as a potential anode material. The oxide form of NTNO has single phase rutile-type structure with tetragonal (P42/mnm) space group. The reduced form is a composite of nano-scaled particles of metallic Ni and Nb1.33Ti0.67O4 phase. Reduced NTNO showed high electronic conductivity up to 280 S.cm− 1 at 900 °C in reducing atmosphere, but suffers from low CTE equal to 3.78 10− 6 K− 1. Studies of NTNO as anode material were carried out in a three electrode - electrochemical half cell configuration under pure humidified H2 at 900 °C using a 2 mm thick zirconia electrolyte and without any additional current collector material. The results show a reasonable series resistance (Rs) equal to 2.7 Ωcm2 (about 50% higher than for metallic gold layers) indicating a good current collection performance for a 10 μm layer of material. The polarization resistance (Rp) was equal to 33 Ωcm2 and is attributed to a poor density of three phase boundaries (TPB) and shortage of oxide ion conduction in the anode layer. The results show the potential of NTNO as an anode material, especially after optimization of the microstructure towards the increase of TPB length.  相似文献   

10.
Iron oxide/silica (Fe:Si as 1:10 atomic ratio) composite materials have been prepared by calcination for 3 h at different temperatures (400-900 °C) of xerogel precursor obtained via a formamide modified sol-gel process. The process involved TEOS and iron(III) nitrate, nitric acid and formamide. Genesis of the composite materials from the xerogel precursor has been investigated by TGA, DSC, FTIR, XRD, SEM and EDX. Results indicated that all the calcined composites are mainly composed of amorphous iron oxide dispersed as finely divided particles in amorphous silica matrixes. Nitrogen adsorption/desorption isotherms revealed a reversible type I of isotherms indicative of microporosity. However, high SBET surface area and microsporosity were observed for the calcined composite materials (e.g. SBET = 625 m2 g−1, and Sαs = 556 m2 g−1 for the composite calcined at 400 °C). Formation of the porous texture was discussed in terms of the action of formamide, which enhanced strengthening of the silica gel network during evaporation of the more volatile components within the composite body during the drying process.  相似文献   

11.
(2 0 2)/(2 2 0)-oriented epitaxial β-FeSi2 thin films were deposited on textured Si (1 0 0) substrate by magnetron sputtering. The influences of thickness and annealing temperature on the β-FeSi2 crystallization were studied to find the optimal condition. The results of surface morphology and optical property measurements showed that the inverted pyramid array in the surface of β-FeSi2 thin films could reduce the surface reflection of β-FeSi2. In dark condition, the β-FeSi2/textured-Si heterojunction showed diode property with rectifying ratio of 2.89 × 105 and built-in potential of 0.58 V. These results indicated the potential application of textured Si substrate in β-FeSi2 solar cells.  相似文献   

12.
Singu  Bal Sydulu  Male  Umashankar  Hong  Sang Eun  Yoon  Kuk Ro 《Ionics》2016,22(8):1485-1491

Herein, we report the facile synthesis of β-Ni(OH)2 nanodiscs by chemical precipitation method and their use in supercapacitors. β-Ni(OH)2 nanodiscs are characterized by FTIR, XRD, FESEM, XPS and TGA analysis. Morphological analysis revealed the uniform nanodisc morphology of β-Ni(OH)2. The supercapacitor behavior is evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements in 1-M aqueous KOH solution with 0- to 0.6-V potential window. The specific capacitance of β-Ni(OH)2 nanodiscs is found to be 400 F g−1. The energy and power densities of the β-Ni(OH)2 nanodiscs are found to be 7.15 W h kg−1 and 1716 W kg−1, respectively, at the current density of 1 A g−1. The cycle life test shows the good stability of the electrode with 83 % retention capacitance even after 1500 cycles.

  相似文献   

13.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

14.
Spherical-particle MCM-41 was synthesized at room temperature, and, then, impregnated with aqueous solutions of NH4VO3 to produce variously loaded VOx/MCM-41 composite materials. Bulk and surface properties of the materials thus produced were characterized by means of X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), N2 sorptiometry and X-ray photoelectron spectroscopy (XPS). Results obtained indicated that subsequent calcination at 550 °C (for 2 h) of the blank and impregnated MCM-41 particles, results in materials assuming the same bulk structure of MCM-41, and exposing uniformly mesporous, high area surfaces (Pw = 2.0-2.3 nm; 974-829 m2/g), except for the material obtained at 20 wt%-V2O5 that was shown to suffer a considerable loss on surface area (down to 503 m2/g). XPS results implied that the immobilization of the VOx species occurs via interaction with surface OH/H2O groups of MCM-41, leading to the formation of vanadate (VO3) surface species, as well as minor V-O-Si and V2O5-like species. However, in all cases, the vanadium sites remained pentavalent and exposed on the surface.  相似文献   

15.
Cobalt-manganese oxide materials (CMOs) were prepared by chemical method and heat treated at 150, 400, 600, 800 and 1000 °C, respectively. The physical and electrochemical properties of the materials were characterized. The heat treatment process leads to the removal of water molecules adsorbed on the surface of CMO particles (below 400 °C) and the progressive reduction of Mn and Co ions from Mn4+ and Co3+ to Mn3+/Mn2+ and Co2+, respectively (440-1000 °C). CMOs obtained by treatment below 800 °C have poor crystallinity and a highly crystallized tetragonal phase by treatment at 1000 °C. The ratio of Mn and Co in CMOs is found by EDX analysis to be about 2:1. The electrochemical testing results indicate that the high crystallization of CMO is disadvantageous for the energy storage as electrode material of electrochemical capacitors. However, for CMOs with poor crystallinity, relatively high specific capacitances can be obtained. The incorporation of protons and ions into the CMO's lattice during electrochemical charge/discharge process leads to the distortion of crystal lattice and improvement of crystallinity of CMO. The XRD patterns show that negative electrode (NE) and positive electrode (PE) have tetragonal (Co, Mn)(Mn, Co)2O4 phase.  相似文献   

16.
α-Fe2O3/MWCNTs composites were prepared by a simple hydrothermal process. The crystalline structure and the electrochemical performance of the as-synthesized samples were investigated. Results show that as anode materials for lithium-ion batteries, the α-Fe2O3/MWCNTs exhibit an initial discharge capacity of 1256 ± 5 mAh g−1 and a stable specific discharge capacity of 430 ± 5 mAh g−1 at ambient temperature, for up to 100 cycles with no noticeable capacity fading, while the initial discharge capacity of the bare Fe2O3 is 992.3 mAh g−1, and the discharge capacity is 146.6 mAh g−1 after 100 cycles. Moreover, the α-Fe2O3/MWCNTs composites also exhibit excellent rate performance.  相似文献   

17.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

18.
Fe‐Co hydroxides with different Fe/Co atomic ratios grown on nickel foams are synthesized by one‐step electrochemical deposition. The prepared samples are characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. It was found that the influence of initial Fe/Co ratios in the precursor solutions on the structure and electrochemical performance of electrodeposited products is significant. Fe(OH)3 shows particle shape with average diameter of 200 nm. With addition of Co ions, frame‐like structure consisting of smaller particles is formed for Fe‐Co hydroxides. Based on the morphology of Co(OH)2, it is deduced that Co(OH)2 serves as a network former constructing a tridimensional frame network structure. Fe‐Co hydroxide with Fe/Co ratio of 1:1 exhibits two types of structure features: nanoflake‐like network structure overall and nanoparticle structure with numerous mesoporous microscopically. As the supercapacitor electrode materials, the as‐prepared Fe‐Co hydroxide electrode with Fe/Co ratio of 1:1 exhibits highest specific capacitance of 2255.6 F g?1 at the current density of 1 A g?1 and also shows good cycling performance of 73.5% capacity retention at current density of 10 A g?1 after 2000 cycles. This work provides a facile method to produce promising Fe‐Co hydroxide electrode materials with high performance for supercapacitors.  相似文献   

19.
The quantitative assessment of gene expression and related enzyme activity in vivo could be important for the characterization of gene altering diseases and therapy. The development of imaging techniques, based on specific reporter molecules may enable routine non-invasive assessment of enzyme activity and gene expression in vivo. We recently reported the use of commercially available S-Gal® as a β-galactosidase reporter for 1H MRI, and the synthesis of several S-Gal® analogs with enhanced response to β-galactosidase activity. We have now compared these analogs in vitro and have identified the optimal analog, C3-GD, based on strong T1 and T2 response to enzyme presence (ΔR1 and ΔR2 ~ 1.8 times S-Gal®). Moreover, application is demonstrated in vivo in human breast tumor xenografts. MRI studies in MCF7-lacZ tumors implanted subcutaneously in athymic nude mice (n = 6), showed significant reduction in T1 and T2 values (each ~ 13%) 2 h after intra-tumoral injection of C3-GD, whereas the MCF7 (wild type) tumors showed slight increase. Thus, C3-GD successfully detects β-galactosidase activity in vivo and shows promise as a lacZ gene 1H MR reporter molecule.  相似文献   

20.
Nanocrystalline SnO2 thin film was prepared by cathodic electrodeposition-anodic oxidation and its structure was characterized by X-ray diffraction, SEM, UV-visible absorption and nitrogen adsorption-desorption by BET method. The obtained film has a surface area of 137.9 m2/g with grain sized of 24 nm. Thus the prepared SnO2 thin film can be applied as an electrode in dye-sensitized solar cell. The SnO2 electrode was successfully sensitized by Erythrosin dye and photoelectrochemical measurements indicate that the cell present short-circuit photocurrent (Jsc) of 760 μA/cm2, fill factor (FF = 0.4), photovoltage (Voc = 0.21 V) and overall conversion efficiency (η) of 0.06% under direct sun light illumination. The relatively low fill factor and photovoltage are attributed to the reduction of triodiode by conduction band electrons and intrinsic properties of SnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号