首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aqueous solution of cupric nitrate trihydrate (Cu(NO3)2·3H2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.  相似文献   

2.
Nanowires of various inorganic materials have been fabricated due to the realization of their applications in different fields. Large-area and uniform cupric oxide (CuO) nanowires were successfully synthesized by a very simple thermal oxidation of copper thin films. The copper films were deposited by electron beam evaporation onto Ti/Si substrates, in which Ti film was first deposited on silicon substrate to serve as adhesion layer. The structure characterization revealed that these nanowires are monoclinic structured single crystallites. The effects of different growth parameters, namely, annealing time, annealing temperature, and film thickness on the fabrication of the CuO nanowires were investigated by scanning electron microscopy. A typical procedure simply involved the thermal oxidation of these substrates in air and within the temperature range from 300 to 700 °C. It is found that nanowires can only be formed at thermal temperature of 400 °C. It is observed that the growth time has an important effect on the length and density of the CuO nanowires, whereas the average diameter is almost the same, i.e.50 nm. Different from the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism, the growth of nanowires is found to be based on the accumulation and relaxation of the stress.  相似文献   

3.
We report the synthesis of CuO-Poly (acrylic) acid (PAA) hybrid thin films by a cost-effective spin coating technique for supercapacitor application. Coated films were annealed at 300, 400 and 500 °C, to study the annealing effect on the supercapacitor behavior. Further films were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform-Raman spectroscopy (FT-Raman) and Fourier transform-Infrared spectroscopy (FT-IR) techniques. Energy dispersive spectroscopy (EDS) shows the formation of amorphous blend of CuO and Cu2O phases at 300 °C. Further, films annealed at 400 and 500 °C exhibit polycrystalline phase pure CuO with monoclinic structure. The scanning electron microscopy (SEM) micrographs show the transition of island-like structure to CuO crystals surrounded by PAA grafted composite ring with increase in annealing temperature. The possible growth mechanism of PAA and CuO bonding is discussed. Cyclic voltammetry (CV) is employed to calculate the specific capacitance (Csp) in 1 M H2SO4 electrolyte. It is observed that the Csp increases from 41 to136 F g−1 with increase in annealing temperature.  相似文献   

4.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

5.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

6.
The remote microwave hydrogen plasma chemical vapor deposition (RP-CVD) from bis(dimethylamino)methylsilane precursor was used for the synthesis of silicon carbonitride (Si:C:N) films. The effect of thermal activation on the RP-CVD process was examined by determining the mass- and the thickness-based film growth rate and film growth yield, at different substrate temperature (TS). It was found that the mechanism of the process depends on TS and for low substrate temperature regime, 30 °C ≤ TS ≤ 100 °C, RP-CVD is limited by desorption of film-forming precursors, whereas for high substrate temperature regime, 100 °C < TS ≤ 400 °C, RP-CVD is a non-thermally activated and mass-transport limited process. The Si:C:N films were characterized by X-ray photoelectron and Fourier transform infrared spectroscopies, as well as by atomic force microscopy. The increase of TS enhances crosslinking in the film via the formation of nitridic Si-N and carbidic Si-C bonds. On the basis of the structural data a hypothetical crsosslinking reactions contributing to silicon carbonitride network formation have been proposed.  相似文献   

7.
Direct current magnetron sputter-deposited ZnO thin films   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 °C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.  相似文献   

8.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

9.
Detailed transmission electron microscopy characterization of HfO2 films deposited on Si(1 0 0) using atomic layer deposition has been carried out. The influence of deposition temperature has been investigated. At 226 °C, a predominantly quasi-amorphous film containing large grains of cubic HfO2 (a0 = 5.08 Å) was formed. Grain morphology enabled the nucleation sites to be determined. Hot stage microscopy showed that both the cubic phase and the quasi-amorphous phase were very resistant to thermal modification up to 500 °C. These observations suggest that nucleation sites for the growth of the crystalline cubic phase form at the growing surface of the film, rather homogeneously within the film. The films grown at higher temperatures (300-750 °C) are crystalline and monoclinic. The principal effects of deposition temperature were on: grain size, which coarsens at the highest temperature; roughness with increases at the higher temperatures due to the prismatic faceting, and texture, with texturing being strongest at intermediate temperatures. Detailed interfacial characterization shows that interfacial layers of SiO2 form at low and high temperatures. However, at intermediate temperatures, interfaces devoid of SiO2 were formed.  相似文献   

10.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

11.
Thin films of indium oxide, In2O3, were deposited by chemical spray pyrolysis technique, using aqueous alcoholic solutions of indium acetylacetonate (In-acac) precursor, on glass substrates kept at temperatures between 300 and 500 °C. The structural, optical, and electrical properties have been investigated as a function of deposition temperature, precursor concentration, carrier gas pressure, and substrate-to-nozzle distance. X-ray diffraction studies showed that the formation of nanocrystalline In2O3 films is preferentially oriented along (2 2 2) plane. The surface morphological modifications with substrate temperature were observed using scanning electron and atomic force microscopic studies. Optical transmittance behavior of the films in the visible and IR region was strongly affected by the deposition parameters. The optical band gap values observed are between 3.53 and 3.68 eV. The long wavelength limit of refractive index is 1.83. The Hall mobility is found to vary from 23 to 37 cm2/V s and carrier density is found nearly constant at about 1020 cm−3.  相似文献   

12.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

13.
Bismuth (Bi) thin films of different thicknesses were deposited onto Si(1 0 0) substrate at various substrate temperatures by thermal evaporation technique. Influences of thickness and deposition temperature on the film morphologies, microstructure, and topographies were investigated. A columnar growth of hexahedron-like grains with bimodal particle size distribution was observed at high deposition temperature. The columnar growth and the presence of large grains induce the Bi films to have large surface roughness as evidenced by atomic force microscopy (AFM). The dependence of the crystalline orientation on the substrate temperature was analyzed by X-ray diffraction (XRD), which shows that the Bi films have completely randomly oriented polycrystalline structure with a rhombohedral phase at high deposition temperature (200 °C) and were strongly textured with preferred orientation at low deposition temperatures (30 and 100 °C).  相似文献   

14.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

15.
In this paper, c-axis oriented AlN films were prepared on sapphire substrate by RF reactive magnetron sputtering at various deposition temperatures (30–700 °C). The influences of deposition temperature on the chemical composition, crystalline structure and surface morphology of the AlN films were systematically investigated. The as-deposited films were characterized by X-ray photoelectron spectroscopy (XPS), two-dimensional X-ray diffraction (2D-XRD) and atomic force microscopy (AFM). The experimental results show that it can be successfully grown for high-purity and near-stoichiometric (Al/N = 1.12:1) AlN films except for the segregation of a few oxygen impurities exist in the form of Al–O bonding. The chemical composition of as-deposited films is almost independent of substrate temperature in the range of 30–700 °C. However, the crystalline structure and surface morphology of the deposited AlN films are strongly influenced by the deposition temperature. The optimum deposition temperature is 300 °C, giving a good compromise between crystalline structure and surface morphology to grow AlN films.  相似文献   

16.
Ag2Cu2O3 films were deposited on glass substrates by reactive sputtering of a composite silver-copper target. The deposited films were annealed in air at 100, 200 and 300 °C. The structure of the films was studied using X-ray diffraction (XRD), their surface morphology was characterised using scanning electron microscopy (SEM) and their electrical resistivity at room temperature was measured using the four point probe method. The 100 °C annealing did not modify either the film structure or the film morphology. On the other hand, Ag2Cu2O3 films were partially decomposed into Ag and CuO after a 200 °C annealing. The decomposition was complete for a 300 °C annealing. The evolution of the film surface morphology as a function of the annealing temperature was discussed in connection to the evolution of the molar volume of the phases constituting the films.  相似文献   

17.
Thin films of CdTe have been deposited onto stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature and pH of the bath have been optimized by photoelectrochemical (PEC) technique to get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize as deposited and also as annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature, and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray (EDAX) study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy (SEM) reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the CdTe film.  相似文献   

18.
The granular CuO films are deposited on n-Si (1 0 0) and sapphire substrates using sol-gel route. Small microstrain leads to ∼5 times larger grain sizes (200-300 nm) and ∼2.5 times larger film thickness (∼0.57 μm) for sapphire than n-Si substrate, which are confirmed by X-ray diffraction and Atomic Force Microscopy. A diode-like current-voltage characteristics are observed for film deposited on n-Si substrate, which is absent for sapphire substrate. Typical manifestation of ferromagnetic character is observed for CuO films, which are strongly influenced by the substrates. Magnetic anisotropy is larger for sapphire substrate than n-Si substrate. At room temperature considerably large magnetoconductance ∼21% and soft ferromagnetic character of CuO film on n-Si substrate are attractive for functional applications.  相似文献   

19.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

20.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号