首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

2.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

3.
The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp3/sp2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.  相似文献   

4.
N-doped p-type ZnO films were grown by plasma-free metal-organic chemical vapor deposition (MOCVD). The effect of substrate temperature on the electrical, optical, and structural properties of the N-doped ZnO films was investigated by Hall-effect, photoluminescence, X-ray diffraction measurements. The electrical properties of the films were extremely sensitive to the substrate temperature and the conduction type could be reversed in a narrow range from 380 °C to 420 °C. Based on X-ray photoelectron spectroscopy, a high compensation effect in the N-doped ZnO films grown by plasma-free MOCVD was suggested to explain the temperature-dependent phenomenon.  相似文献   

5.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

6.
ZnO:In films are successfully prepared by using the electrostatic spray deposition technique. X-ray diffraction indicates that the ZnO:In films have a polycrystalline hexagonal wurtzite structure with lattice parameters a=3.267 Å and c=5.209 Å. Photoluminescence properties of the films are investigated in the temperature range of 11.6-300 K, showing strong luminescence in the whole range of temperature. The temperature dependence of the photoluminescence are carried out with full profile fitting of spectra, which clearly shows that the ultraviolet (UV) emission in In-doped ZnO films at low temperature are attributed to emission of a neutral donor-bound exciton (D°X) and recombination of donor-acceptor pairs (DAP), while the UV emission at room temperature originates from radiative transition of an electron bound on a donor to the valence band.  相似文献   

7.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

8.
To extend the applicability of ZnO, with the bulk band gap of about 3.3 eV, into deep UV region, we have grown a multilayer of alumina capped ZnO quantum dots of mean in-plane sizes in the range of ∼1.8-3.6 nm at room temperature using alternate Pulsed Laser Deposition. Size dependent blue shift of the band gap of these dots up to ∼4.5 eV is observed in the optical absorbance spectra. The observed blue shift can be understood using the effective mass approximation in weak and strong confinement regimes.  相似文献   

9.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

10.
Platinum and carbon were deposited onto the surface of molybdenum grids simultaneously by ion beam assisted deposition. The structure of the Pt-C films was studied by XRD and Raman spectroscopy. The XRD results showed that Pt exhibited mixed strong (1 1 1) and weak (2 0 0) orientations. The Raman spectra showed that the carbon existed in the form of graphite-like phase. Electron emission characteristics from the Mo grid with and without Pt-C films were measured using analogous diode method. The results showed that electron emission from the Mo grid coated with Pt-C films was much less than that from the Mo grid without Pt-C films. The obtained results demonstrated that the Pt-C films are effective grid-coating materials for the application of suppression thermo-electron emission.  相似文献   

11.
Heterojunction light-emitting diodes with ZnO/Si structure were fabricated on both high-resistivity (p) and low-resistivity (p+) Si substrates by metal-organic chemical vapor deposition technology. Fairly good rectifications were observed from the current-voltage curves of both heterojunctions. Ultraviolet (UV) and blue-white electroluminescence (EL) from ZnO layer were observed only from ZnO/p+-Si heterojunction under forward bias at room temperature (RT), while strong infrared (IR) EL emissions from Si substrates were detected from both ZnO/p-Si and ZnO/p+-Si heterojunctions. The UV and IR EL mechanisms have been explained by energy band structures. The realization of RT EL in UV-visible and IR region on Si substrate has great applicable potential for Si-based optoelectronic integrated circuits.  相似文献   

12.
Structure and magnetization of CoFeP films prepared by the electroless deposition were systematically investigated by varying the bath composition and deposition parameters to optimize soft magnetic properties. The cobalt content in the CoFeP films varies from 40.4 to 94.9 wt% by controlling the bath composition. Increase of the metallic ratio FeSO4·7H2O/(CoSO4·7H2O+FeSO4·7H2O) affects the films’ microstructure, which switches from amorphous to crystalline structure. The magnetic properties of CoFeP films reveal that the coercivity (Hc) values range from 80 up to 185 A/m and the saturation magnetization (Ms) from 82 to 580 eum/g depending on the bath composition, deposition parameters and heat-treatment conditions. Increase of Ms and remanent magnetization (Mr) as well as decrease of Hc are observed for the CoFeP films with bath pH, temperature and the metallic molar ratio increasing. It is also found that the Hc is enhanced with the increase of NaH2PO2·H2O concentration. CoFeP films showing good soft magnetic properties with coercivities less than 140 A/m and Ms close to 600 emu/g can be obtained in high pH bath and thereafter heat treatment. The deposit is found to be suitable as soft magnetic materials for core materials.  相似文献   

13.
J.P. Kar  W. Lee 《Applied Surface Science》2008,254(20):6677-6682
Vertical aligned ZnO nanowires were grown by MOCVD technique on silicon substrate using ZnO and AlN thin films as seed layers. The shape of nanostructures was greatly influenced by the under laying surface. Vertical nanopencils were observed on ZnO/Si, whereas the nanowires on both sapphire and AlN/Si substrate have the similar aspect ratio. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy (HRTEM) confirmed the single crystalline growth of the ZnO nanowires along [0 0 1] direction. Room-temperature photoluminescence (PL) spectra of ZnO nanowires on AlN/Si clearly show a band-edge luminescence accompanied with a visible emission. More interestingly, no visible emission for the nanopencils on ZnO/Si substrates, were observed.  相似文献   

14.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

15.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

16.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

17.
Nickel films of different thickness ranging from 15 nm to 350 nm were deposited on glass substrates, at different substrate temperatures (313-600 K) under UHV condition. The nano-structure of the films was obtained, using X-ray diffraction (XRD) and atomic force microscopy (AFM). The nano-strain in these films was obtained using the Warren-Averbach method. Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig method was used for the analysis of the reflectivity curves. The absorption peaks of Ni thin films at ∼1.4 eV (transition between the bands near W and K symmetry points) and ∼5.0 eV (transition from L2 to L1 upper) are observed, with an additional bump at about 2 eV. The over-layer thickness was calculated to be less than 3.0 nm, using the Transfer Matrix method. The changes in optical data are related to different phenomena, such as different crystallographic orientations of the grains in these polycrystalline films (film texture), nano-strain, and film surface roughness.  相似文献   

18.
Transparent conductive ZnO film was deposited on glass substrate by pulsed filtered cathodic vacuum arc deposition (PFCVAD). Optical parameters such as absorption coefficient α, the refractive index n, energy band gap Eg and dielectric constants have been determined using different methods. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. The spectra of the dielectric coefficient were used to calculate the energy band gap and the value was 3.24 eV. The experimental energy band gap was found to be 3.22 eV for 357 nm thick ZnO thin film. The envelope method was also used to calculate the refractive index and the data were consistent with K-K relation results. The structure of the film was analyzed with an x-ray diffractometer and the film was polycrystalline in nature with preferred (002) orientation.  相似文献   

19.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

20.
Nanocrystalline silicon (nc-Si) films were prepared by a plasma-enhanced chemical vapor deposition method at a deposition temperature below 220 °C with different dynamic pressures (Pg), hydrogen flow rates ([H2]), and RF powers, using SiH4/H2/SiF4 mixtures. We examined the photo-luminescence (PL) spectra and the structural properties. We observed two stronger and weaker PL spectra with a peak energies around EPL = 1.8 and 2.2-2.3 eV, respectively, suggesting that the first band was related to nanostructure in the films, and another band was associated with SiO-related bonds. The nc-Si films with rather large PL intensity was obtained for high [H2] and/or low pressure values, However, effects of [H2] are likely to be different from those of Pg. The average grain size (δ) and the crystalline volume fraction (ρ) at first rapidly increase, and then slowly increase, with increasing Pg. Other parameters exhibited opposite behaviors from those of δ or ρ. These results were discussed in connection with the changes in the PL properties with varying the deposition conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号