首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

2.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

3.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

4.
Zinc blende (ZB) CdSe hollow nanospheres were solvothermally synthesized from the reaction of Cd(NO3)2·4H2O with a homogeneously secondary Se source, which was first prepared by dissolving Se powder in the mixture of ethanol and oleic acid at 205 °C. As Se power directly reacted with Cd(NO3)2·4H2O in the above mixed solvents, wurtzite (W) CdSe solid nanoparticles were produced. Time-dependent experiments suggested that the formation of CdSe hollow nanospheres was attributed to an inside-out Ostwald ripening process. The influences of reaction time, temperature and ethanol/oleic acid volume ratio on the morphology, phase and size of the hollow nanospheres were also studied. Infrared (IR) spectroscopy investigations revealed that oleic acid with long alkene chains behaved as a reducing agent to reduce Se powder to Se2− in the synthesis. Photoluminescence (PL) measurements showed that the ZB CdSe hollow nanospheres presented an obvious blue-shifted emission by 42 nm, and the W CdSe solid nanoparticles exhibited a band gap emission of bulk counterpart.  相似文献   

5.
Iodine-doped mesoporous TiO2 (I/TiO2) was prepared by hydrothermal method, using tetrabutyl titanate as precursor, potassium iodate as iodine sources. The as-prepared I/TiO2 catalysts were characterized by UV-vis, XRD, TEM, BET, TG/DTA, XPS and photoluminescence (PL) spectroscopy. Production of OH radicals on the I/TiO2 surface was detected by the PL technique using terephthalic acid as a probe molecule. The effects of hydrothermal reaction temperature, calcination temperature and iodine doping content on the structure and properties of the catalysts were investigated. The results showed that iodine-doped TiO2 calcinated at 300 °C have good anatase crystal. The optimal hydrothermal conditions have been determined to be that reaction temperature 120 °C, calcinated temperature 300 °C and added 1.16 mmol iodine dopants. The average particle size of I/TiO2 synthesized under optimal condition (I-3 sample) is about 3.9 nm. The I-3 photocatalyst contains 100% anatase crystalline phase of TiO2. BET specific surface area of I-3 sample is184.8 m2 g−1 and is 3.67 times that of pure TiO2 (50.37 m2 g−1). Iodine in I/TiO2 catalyst mainly exists in the form of I2, and photoactivity of I/TiO2 catalyst in visible light comes from photosensitize of I2. I/TiO2 catalysis shows very high efficiency for the degradation of phenol under visible light.  相似文献   

6.
To study surface behaviors, MgFe2O4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe2O4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe2O3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe2O4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO2. The conductance change, C = G(air)/G(10 ppm NO2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO2 gas, because the ratio of the O2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.  相似文献   

7.
TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.  相似文献   

8.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

9.
Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.  相似文献   

10.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

11.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

12.
Nanocrystalline Co3O4 powders were synthesized by aerosol flame synthesis (AFS) method for the anode of lithium ion batteries and the basic electrochemical properties were investigated. The effects of synthesis conditions and heat-treatment temperature on the morphology, crystallite size and electrochemical properties were investigated. As-prepared soot contained Co3O4, CoO and Co(OH)2, which were eventually converted into cubic spinel Co3O4 by post heat treatment. The as-prepared particle size was in the range of 10-30 nm and grew to 50-85 nm by the heat treatment. With growing particle size and improved crystallinity, charge-discharge capacity and cycle performance were improved and the discharge capacity of the powder heat-treated at 700 °C was 571 mAh/g after 30 cycles, which was better than Co3O4 powder reported in the previous literature.  相似文献   

13.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

14.
CaSO4:Eu with particle size in submicron range was synthesized. Radiation induced Eu3+↔Eu2+ conversion as well as thermal conversion was studied. The samples showed thermal conversion above 400 °C. However, no radiation induced conversion in submicron range particles was observed. Particles heated above 400 °C coalesce and when heated at 925 °C bigger particles of 20 μm size were formed. Optical microscopy of these particles reveals red inclusion of about 5 μm inside CaSO4 particle. It is speculated that the red inclusion is CaS:Eu2+.  相似文献   

15.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

16.
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ∼11 nm and then decreases for larger particles. Typical blocking effects were observed below ∼225 K for all the prepared samples. The superparamagnetic blocking temperature (TB) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.  相似文献   

17.
Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at low temperature (350 °C) and normal temperature (550 °C) for 15 h. The composition, microstructure, microhardness profiles, residual stress profiles and electrochemical impedance spectrum analyses of the nitrided samples were examined. The influence of plasma nitriding on the erosion and erosion-corrosion resistance of AISI 420 martensitic stainless steel was investigated using a jet solid particle erosion tester and a slurry erosion-corrosion tester.Results showed that the 350 °C nitriding layer was dominated by ?-Fe3N and αN phase, a supersaturated nitrogen solid solution. However, nitrogen would react with Cr in the steel to form CrN precipitates directly during 550 °C nitriding, which would lead to the depletion of Cr in the solid solution phase of the nitrided layer. Both 350 and 550 °C plasma nitriding could improve the erosion resistance of AISI420 stainless steel under dry erosion, but the former showed better results. In both neutral and acid environment, while the erosion-corrosion resistance of AISI 420 was improved by means of 350 °C nitriding, it was decreased through 550 °C nitriding.  相似文献   

18.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

19.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser. The films were deposited on SiO2 substrates heated at 200 and 400 °C. ITO and TiO2 films with uniform thicknesses of about 400 and 800 nm, respectively, over large areas were prepared. X-ray diffraction (XRD) analysis revealed that the ITO films are formed of highly orientated nanocrystals with an average particle size of 10-15 nm. Atomic force microscopy (AFM) observations indicate rough ITO films surfaces with average roughness of 26-30 nm. Pores were also observed. TiO2 films deposited on the prepared ITO films result less crystalline. Annealing at 300 and 500 °C for three consecutive hours promoted formation of TiO2 anatase phase, with crystal size of ∼6-7 nm. From the scanning transmission electron microscope (STEM) images, it can be seen that the TiO2 films deposited onto the prepared ITO films present a relatively high pore sizes with an average pore diameter of ∼40 nm and excellent uniformity. In addition, STEM cross-sectional analysis of our films showed a columnar structure but no evidence of voids in the structure. Therefore, films exhibited large surface area, well suited for dye-sensitized solar cells (DSSC) applications.  相似文献   

20.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号