首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

2.
Superhydrophobic surface was prepared by sol-gel method on aluminum substrate via immersing the clean pure aluminum substrate into the solution of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetraamine (C6H12N4) at different molar ratios and unchanged 0.04 mol/L total concentration, then heated at 95 °C in water bath for 1.5 h, subsequently modified with 18 alkanethiols or stearic acid. When the molar ratios of Zn(NO3)2·6H2O and C6H12N4 were changed from 10:1 to 1:1 the contact angle was higher than 150°. The best prepared surface had a high water contact angle of about 154.8°, as well as low angle hysteresis of about 3°. The surface of prepared films using Zn(NO3)2·6H2O and C6H12N4 composed of ZnO and Zn-Al LDH, and Al. SEM images of the film showed that the resulting surface exhibits different flower-shaped wurtzite zinc oxide microstructure and porous Zn-Al LDH. The special flowerlike and porous architecture, along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

3.
During evaporation, shape changes of nanoliter-scale (80-100 nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, μm-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170 s (nm-coating) and around 150 s (μm-coating) suggesting a wetting mode transition. The calculated droplet radii for the wetting mode transition from the average roughness distance and the average roughness height of these surface structures were approximately equal to the experimental values at these trend changes. A certain level of correlation between the roughness size and droplet radius at the wetting mode transition was confirmed on surfaces with random roughness.  相似文献   

4.
Binary geometric structures at the micro- and nano-scale are fabricated on copper surfaces via simple sandblasting and surface oxidation process. The rough surfaces show excellent superhydrophobicity and ultra-low water roll angle (RA) after fluorination. The structure effect is deduced by comparing it with those of a single micro- or nano-scale structure. Such superhydrophobic copper surfaces can be widely used in many fields such as corrosion protection, liquid transportation without loss. Such a facile technique is expected to offer a feasible avenue for the industrial fabrication of superhydrophobic surfaces.  相似文献   

5.
A superhydrophobic surface was obtained by embedding hydrophobically modified fumed silica (HMFS) particles in polyvinylidene fluoride (PVDF) matrix. The water contact angle (WCA) on the PVDF-HMFS hybrid composite coating is influenced by the content and nature of silica particles in the coating. As the silica concentration in PVDF matrix was increased from 33.3% to 71.4%, WCA increased from 117° to 168° and the sliding angle decreased from 90° to <1°. Surface topography of the coating was examined using scanning electron microscopy. An irregular rough surface structure composed of microcavities and nanofilaments was found to be responsible for the superhydrophobicity. The method is simple and cost-effective and can be used for preparing self-cleaning superhydrophobic coating on large areas of different substrates.  相似文献   

6.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

7.
ZnO is an important material that is used in a variety of technologies including optical devices, sensors, and other microsystems. In many of these technologies, wettability is of great concern because of its implications in numerous surface related interactions. In this work, the effects of surface morphology and surface energy on the wetting characteristics of ZnO were investigated. ZnO specimens were prepared in both smooth film and nanowire structure in order to investigate the effects of surface morphology. Also, a hydrophobic octadecyltrichlorosilane (OTS) coating was used to chemically modify the surface energy of the ZnO surface. Wettability of the surfaces was assessed by measuring the water contact angle. The results showed that the water contact angle varied significantly with surface morphology as well as surface energy. OTS coated ZnO nanowire specimen had the highest contact angle of 150°, which corresponded to a superhydrophobic surface. This was a drastic difference from the contact angle of 87° obtained for the smooth ZnO film specimen. In addition to the initial contact angle, the evolution of the water droplet with respect to time was investigated. The wetting state of water droplet was analyzed with both Wenzel and Cassie-Baxter models. Spontaneous and gradual spreading, together with evaporation phenomenon contributed to the changing shape, and hence the varying contact angle, of the water droplet over time.  相似文献   

8.
Stable superhydrophobic surfaces have been effectively fabricated on the zinc substrates through one-step platinum replacement deposition process without the further modification or any other post processing procedures. The effect of reaction temperatures on the surface morphology and wettability was studied by using SEM and water contact angle (CA) analysis. Under room temperature, the composite structure formed on the zinc substrate was consisted of microscale hexagonal cavities, densely packed nanoparticles layer and micro/nanoscale structures like the flowers. The structure has exhibited great surface roughness and porosity contributing to the superhydrophobicity where the contact angle could reach an ultra high value of around 170°. Under reaction temperature of 80 °C, the composite structure, on the other hand, was hierarchical structure containing lots of nanoscale flowers and some large bushes and showed certain surface roughness (maximum CA value of about 150°). In addition, an optimal superhydrophobic platinum surface was able to provide an effective anticorrosive coating to the zinc substrate when it was immersed into an aqueous solution of sodium chloride (3% NaCl) for up to 20 days. The corrosion process was monitored through electrochemical means and the results are compared with those of unprotected zinc plates.  相似文献   

9.
The superhydrophobic polyphenylsilsesquioxane (PPSQ)/nanosilica composite coatings were prepared by spray coating method with nano fumed silica (NFS) particles embedded in PPSQ matrix. The water contact angle (WCA) increased from 92.9° to 152.5° and the sliding angle (SA) decreased from more than 60° to 3.9° as the NFS content increased. The superhydrophobicity retained up to 500 °C, sustained by the hierarchical micro-nano structures and excellent thermal stability of PPSQ. A superhydrophobic PPSQ coating with WCA of 152.6° and SA of 7.8° was obtained by solvent-nonsolvent method for comparison as well. However, it gradually lost superhydrophobicity at 200 °C because of the elimination of nanostructures by the thermal softening of PPSQ.  相似文献   

10.
Superhydrophobic structure was prepared on copper foil via a facile solution-immersion method. Thus slice-like Cu2(OH)3NO3 crystal was prepared on the surface of the copper foil by sequential immersing in an aqueous solution of sodium hydroxide and cupric nitrate. And the superhydrophobic structure was obtained by modifying the slice-like Cu2(OH)3NO3 crystal with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS-17). The morphologies, chemical compositions and states, and hydrophobicity of the surface-modifying films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement. Moreover, the thermal stability of the slice-like structure was also evaluated using thermogravimetric analysis (TGA). It was found that roughening of the copper foil surface helped to increase the hydrophobicity to some extent, but no superhydrophobicity was obtained unless the slice-like Cu2(OH)3NO3 crystal formed on the Cu substrate was modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Besides, the superhydrophobicity of the FAS-17-modified slice-like Cu2(OH)3NO3 structure was closely related to the surface morphology. And this hydrophobic structure retained good superhydrophobic stability at elevated temperature and in long-term storage as well, which should be critical to the application of Cu-matrix materials in engineering.  相似文献   

11.
The lotus-leaf-like superhydrophobic copper was fabricated by a facile two-step method without the chemical modification, on which the water contact angle can reach 158° and the water-sliding angle is less than 10°. Reversible superhydrophobicity to superhydrophilicity transition was observed and controlled by alternation of UV irradiation and dark storage. More interestingly, the superhydrophobic surface exhibits superoleophilicity and all those properties can be well used in reversible switch, separating the water and oil and so on.  相似文献   

12.
In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.  相似文献   

13.
Two biomimetic superhydrophobic polymeric surfaces were obtained by a simple approach under ambient atmosphere. Water and ethanol were used as the nonsolvents in the method of phase separation in different systems. The influences of various factors in the process were investigated. Both of the as-prepared films showed excellent superhydrophobicity, depending on the high contact angle and the low contact angle hysteresis. Moreover, the classic and a new modified Cassie-Baxter relation were used on the polystyrene and poly-α-methyl styrene films to confirm the superhydrophobic performance.  相似文献   

14.
A facile and novel method was developed to fabricate rough Co3O4 surface with hierarchical micro- and nanostructures by the combination of simple solid state reactions and coating process. After modification with stearic acid, a superhydrophobic surface with water contact angle of 155 ± 1.8° and sliding angle of 2° was obtained. The superhydrophobic Co3O4 surface remained superhydrophobic property in a wide pH range from 3 to 14. The superhydrophobic Co3O4 surface also showed excellent self-cleaning property and high stability in ambient environments.  相似文献   

15.
Wetting phenomena of water droplets on solid are of crucial concern in our daily life as well as in engineering and science. The present paper describes the room temperature synthesis of superhydrophobic silica films on glass substrates using trimethylethoxysilane (TMES) as a co-precursor. The coating sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:38.6:8.68, respectively, with 2 M NH4OH throughout the experiments and the TMES/TEOS molar ratio (M) was varied from 0 to 1.1. It was found that with an increase in M value, the hydrophobicity of the films increased, however the optical transmission decreased from 88% to 82% in the visible range. The hydrophobic silica films retained their hydrophobicity up to a temperature of 275 °C and above this temperature the films became superhydrophilic. The hydrophobic silica films were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FT-IR) spectroscopy, percentage of optical transmission, humidity test and static and dynamic contact angle measurements.  相似文献   

16.
Stable superhydrophobic surfaces were fabricated on the zinc substrates through simple silver replacement deposition process with the modification of octadecyl mercaptan. The effects of reaction conditions on the surface morphology and wettability of the prepared surfaces were carefully studied. The results show that the fabrication of a best superhydrophobic surface depends largely on the moderate reactant concentration. When the concentration of AgNO3 solution was 2 mmol/L, the zinc substrate was covered by a dendritic outline structure. Aggregated silver nanoparticles were formed on the substrate in accordance with some certain laws, exhibiting great surface roughness. The typical hierarchical micro-nanostructures, flower-like structures and porous structures also could be found from the SEM images. The maximal water contact angle (CA) value of about 161 ± 2°, and the minimal sliding angle (SA) of about 2° were obtained under the same reaction condition.  相似文献   

17.
Superhydrophobic functionalized cupric hydroxide (Cu(OH)2) nanotube arrays were prepared on copper foils via a facile alkali assistant surface oxidation technique. Thus nanotube arrays of Cu(OH)2 were directly fabricated on the surface of copper foil by immersing in an aqueous solution of NaOH and (NH4)2S2O8. The wettability of the surface was changed from surperhydrophilicity to superhydrophobicity by chemical modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS). The morphologies, microstructures, crystal structure, chemical compositions and states, and hydrophobicity of the films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. It was found that the rough structure of the surface helped to magnify the wettability. The static contact angle (CA) for water is larger than 160° and the contact angle hysteresis (CAH) is lower than 5° on the modified surface. The high roughness of the nanotube arrays along with the generated C-F chains by chemical modification contributed to the improved superhydrophobicity. The present research is expected to be significant in providing a new strategy for the preparation of novel multifunctional materials with potential industrial applications on copper substrates.  相似文献   

18.
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.  相似文献   

19.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

20.
Fabrication of a superhydrophobic surface on a wood substrate   总被引:2,自引:0,他引:2  
A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号