首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, polyurethane/titania (PU/TiO2) nanocomposites were prepared in ultrasonic process and characterized by fourier transform IR spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared emissivity analysis. The TEM and SEM results indicated that the nanoparticles were dispersed homogeneously in PU matrix on nanoscale. TGA-DSC confirmed that the heat stability of the composite was improved. Infrared emissivity study showed that the nanocomposite possessed lower emissivity value than those values of pure polymer and nanoparticles.  相似文献   

2.
In this paper, we reported the preparation of poly(methylhydrosiloxane) (PMHS)/SiO2 hybrid particles by mechanochemical method based on high energy ball milling (HEBM). The obtained hybrid particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, 29Si CP (cross-polarization) MAS NMR, viscosity measurement, particle size distribution, thermal analysis (TGA, DSC and DTG), static contact angle (CA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). FT-IR and 29Si CP MAS NMR spectra indicate that PMHS is chemically anchored onto the surface of nano-SiO2. Viscosity measurement, particle size distribution, FE-SEM and TEM demonstrate that an appropriate grafting density optimizes the dispersion of nanoparticles in poly(dimethylsiloxane) (PDMS) matrix, so lower viscosity can be achieved. Too high or too low grafting density may only achieve suboptimal and poor dispersions. The optimum grafting density of PMHS on nano-SiO2 was determined by thermal analysis, with approximately 0.0531 PMHS/nm2. Static contact angle measurement indicates that the water contact angle of hybrid particles is modulated by changing the grafting density of PMHS on nano-SiO2. The CA value of PMHS/SiO2 hybrid with optimum grafting density is 139.4°, and the highest CA value of PMHS/SiO2 hybrid is approximately 158.2°.  相似文献   

3.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

4.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

5.
Au/SiO2 nanocomposite films were prepared on Si wafers by cosputtering of SiO2 and gold wires. Au/Si atomic ratios in Au/SiO2 nanocomposite films were varied from 0.53 to 0.92 by controlling the length of gold wire to study the evolution of the crystallization of gold, the size of Au/SiO2 nanocomposite particles, and the optical properties of as-deposited Au/SiO2 nanocomposite films. An X-ray photoelectron spectroscopy reveals that Au exists as a metallic phase in the bulk of SiO2 matrix. Dome-shaped Au/SiO2 nanocomposite particles and both Au (1 1 1) and (2 0 0) planes were observed in a field-emission scanning electron microscopy and X-ray diffraction studies respectively. With an ultraviolet-visible, absorption peaks of Au/SiO2 nanocomposite films were observed at 525 nm.  相似文献   

6.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

7.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

8.
Manganese-doped zinc silicate (Zn2SiO4:Mn) is a kind of phosphor material that has a photo-luminescent (PL) and cathode-luminescent (CL) properties with intensive green light emission at 520 nm. The particles consisting of SiO2@Zn2SiO4:Mn (SiO2 core-Zn2SiO4:Mn shell) were synthesized via colloidal process and forced precipitation. After drying, the Zn/Mn precipitates were coated on the surface of SiO2 particles. The Zn/Mn precipitates reacted with SiO2 and transformed to Zn2SiO4:Mn by suitable calcination. The microstructure, crystalline phase, and luminescent characteristics of the products were studied. Besides, a CL device consisting of the core-shell powder was characterized.  相似文献   

9.
Au/SiO2 nanocomposite films were fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering technique and annealing at different temperature for 20 min (mode A) and at 1000 °C for different annealing time (mode B). The nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). SEM results demonstrate that the size of Au crystallites in mode A first increases and then decreases, on increasing annealing temperature, according to the results of XRD spectra. Analysis of PL spectra in mode B shows that the intensity of the emission peak at 440 nm and 523 nm early increases and late decreases, with increasing annealing time at 1000 °C. The origin of the emission peak at around 440 nm was related to the size and quantity of Au particles and one of the emission peak at around 523 nm was related to the nanostructure of films in agreement with SEM imagines. Experimental results indicated that morphology, microstructure and luminescence of Au/SiO2 nanocomposite films showed close affinity with annealing temperature and annealing time.  相似文献   

10.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

11.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

12.
ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO2 nanoparticles with thinner SiO2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.  相似文献   

13.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

14.
孙小飞  魏长平  李启源 《物理学报》2009,58(8):5816-5820
以AgNO3,HAuCl4和正硅酸乙酯为主要原料,利用溶胶-凝胶法和旋涂技术,通过热处理和紫外光辐射还原得到了不同nAg/nAu(1∶0,2∶1,1∶2,0∶1)的Ag-Au合金/SiO2复合薄膜.从扫描电子显微镜和X射线衍射谱的结果可以看出得到的薄膜均匀性好,复合薄膜中合金颗粒的尺寸为10 nm左右.利用紫外-可见分光光谱仪研究了复合薄膜的光吸收性能,结果表明,随着nAg/nAu的降低,吸收峰的位置也由最初的Ag纳米粒子的等离子共振吸收峰430 nm附近,逐渐红移到Au纳米粒子的等离子共振吸收峰605和880 nm附近.从光吸收谱可以看出,nAgnAu=2∶1和1∶2的两个样品分别在515,730 nm附近和550,730 nm附近出现表面等离子共振吸收峰.这表明Au-Ag合金固溶体的形成. 关键词: 2')" href="#">Ag-Au合金/SiO2 紫外辐射 光吸收性能  相似文献   

15.
TiO2/Fe2O3 core-shell nanocomposition film has been fabricated via two-step method. TiO2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe2O3 nanoparticles deposited on TiO2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe2O3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe2O3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO2/Fe2O3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO2 NRs modified by Fe2O3 show the photocurrent value of 1.36 mA/cm2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO2 NRs.  相似文献   

16.
Wei Zhou  Manlin Tan 《Optik》2012,123(23):2171-2173
SnO2-CuO nanocomposite was synthesized by impregnating SnO2 nanowires with CuCl2 solution and subsequent calcination. SEM and XRD were used to characterize the morphology and structure of the product. The optical properties were analyzed by Raman and photoluminescence (PL) spectra at room temperature. Except the strong orange emission of SnO2, the PL spectrum showed a red shoulder at 678 nm which originated from the interface between SnO2 and CuO.  相似文献   

17.
Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.  相似文献   

18.
The influence of SiO2 on the dielectric properties of barium titanate ceramics was investigated. SiO2 had been doped solely and together with BaO into barium titanate before calcination. X-ray diffraction showed that all the ceramics were of a pure perovskite phase after sintering at 1275 °C for 2 h. For SiO2-doping, there was about 2.5 °C increase in Curie temperature per molar percentage of doping and the leakage current was obviously increased, especially at low voltages for relatively high doping levels. While for the co-doping of SiO2 and BaO, there was little change in Curie temperature. The point defects formed through the dopings were proposed responsible for the effects. It was suggested that SiO2 is important to barium titanate ceramics not only for sintering but also for modifying their properties.  相似文献   

19.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

20.
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号