首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.  相似文献   

2.
Micro-arc oxidation (MAO) is commonly applied to modify the surface of titanium (Ti)-based medical implants with a bioactive and porous Ti oxide (TiO2) coating. The study reports a new method of incorporating hydroxyapatite (HA) within the TiO2 coating by MAO and alkali heat treatment (AHT) in the solution containing Ca ion and P ion. The morphology, composition and phase composition of the coatings were analyzed with scanning electron microscopy with energy-dispersive X-ray spectrometer and X-ray diffraction. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in the tapping mode. The results showed that TiO2-based coatings were obtained on pure Ti by MAO with an electrolyte containing Ca ion and P ion; the prepared MAO coatings were mainly composed of Ca, P, O and Ti. AHT transformed Ca and P to HA crystals. In conclusion, the TiO2/HA composite coatings can be obtained on the surface of pure Ti by MAO and AHT, and the addition of Ca ion and P ion to the AHT solution contributed to the formation of HA.  相似文献   

3.
采用平面波超软赝势方法计算了锐钛矿型TiO2(101)面的表面能和表面原子弛豫结构.首先对TiO2(101)面的6种不同的表面原子终止结构的体系总能量进行了计算,结果表明终止原子为两配位的O原子、次层为五配位的Ti原子的表面结构最为稳定.针对该表面研究了表面能和原子弛豫与模型中原子层数和真空厚度的关系,当原子层数为12层,真空厚度为0.4nm时,表面能收敛度小于0.01J/m2.研究发现:表面上两配位的O原子向里移动约0.0012nm,五配 关键词: 第一性原理 2')" href="#">TiO2 表面结构 弛豫  相似文献   

4.
In this study, we prepared highly ordered TiO2 nanotube arrays on Ti through an anodizing process. Then, utilizing its proven antibacterial properties, we coated our TiO2 nanotubes (TiO2-NTs) with ZnO using the sol–gel method. We characterized the morphology, structure, and composition of the ZnO-coated TiO2 nanotubes (ZnO-TNTs) using field-emission scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, respectively. We investigated surface topography and roughness of the coatings by atomic force microscopy operated in the tapping mode. Our results revealed impurity-free, anatase-phase TiO2 nanotubes that are uniformly coated with a ZnO layer. Finally, we tested the antibacterial activity of ZnO-TNTs against Staphylococcus aureus, and found ZnO-TNTs significantly improved the antibacterial properties of Ti implants. We conclude that ZnO-TNTs provide Ti with antibacterial activity, which highlights its potential in orthopedic and dental implants.  相似文献   

5.
《Composite Interfaces》2013,20(6):585-593
Titanium (Ti) and its alloys are widely used as metallic biomaterials for fabrication of dental and orthopedic implants due to their favorable biocompatibility and corrosion resistance in a body environment. However, the thin oxide layer (TiO2) on Ti substrate formed naturally in air or in many aqueous environments is bioinert and surrounded by fibrous tissues without producing any chemical or biological bond to bone when implanted. In the present work, Zinc-incorporated porous TiO2 coatings (Zn–TiO2) were prepared on Ti substrate by micro-arc oxidation (MAO) technique in the zinc gluconate-containing electrolyte. The surface morphology, cross-sectional morphology, composition, and phase of the coatings were analyzed using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometry, respectively. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in tapping mode. The results showed that Zn was successfully incorporated into the porous TiO2 coatings, which did not alter apparently its surface topography and phase composition. In conclusion, the formation of porous Zn–TiO2 coatings endow Ti with potential bioactivity and antibacterial activity, and we believe that the porous Zn–TiO2 coatings on Ti by MAO technique might be promising candidates for orthopedic and dental implants  相似文献   

6.
The effect of etching time on the statistical properties of hydrophilic surfaces of SiO2/TiO2/glass nano bilayers has been studied using atomic force microscopy (AFM) and a stochastic approach based on a level crossing analysis. We have created rough surfaces of the hydrophilic SiO2/TiO2 nano bilayer system by using 26% potassium hydroxide (KOH) solution. Measuring the average apparent contact angle allowed us to assess the degree of hydrophilicity, and the optimum condition was determined to be 10 min etching time. A level crossing analysis based on AFM images provided deeper insight into the microscopic details of the surface topography. With different etching times, it has been shown that the average frequency of visiting a height with positive slope behaves in a Gaussian manner for heights near the mean value and obeys a power law for heights far away from the mean value. Finally, by applying the generalized total number of crossings with positive slope, it was found that the both high heights and deep valleys of the surface have a great effect on the hydrophilic degree of the SiO2/TiO2/glass nano bilayer investigated system.  相似文献   

7.
Recent progress in ultrafine-grained/nano-grained (UFG/NG) titanium permits a consideration for TiO2 films deposited on nano-grained titanium for antithrombogenic application such as artificial valves and stents. For this paper, the microstructure, interface bonding, surface energy, and blood compatibility features of TiO2 films deposited by direct current magnetron reactive sputtering technology on NG titanium and coarse-grained (CG) titanium were investigated. The results show that the nanocrystallization of titanium substrate has a significant influence on TiO2 films. At the same deposition parameters, the content of rutile phase of TiO2 film was increased from 47% (on the CG titanium substrate) to 72% (on the NG titanium substrate); the adhesion of TiO2 film was improved from 5.8 N to 17 N; the surface energy was reduced from 6.37 dyn/cm to 3.01 dyn/cm; the clotting time was improved from 18 min to 28 min; the platelets accumulation and pseudopodium of adherent platelets on TiO2 film on NG titanium were considerably reduced compared to that on CG titanium. The present results demonstrate the possibility of improving the blood compatibility of TiO2 film through the approach of substrate nanocrystallization. Also it may provide an attractive idea to prepare stents with biological coatings of more outstanding blood compatibility and interface bonding.  相似文献   

8.
In the present work, we report the data about formation of TiO2-rutile or TiO2 and Mn2O3, Mn3O4 containing oxide structures on titanium in aqueous electrolytes by means of plasma-electrolytic deposition. The layers formed are characterized by X-ray diffraction, electron probe microanalysis and scanning electron microscopy methods. The PEO coatings on titanium formed in sodium tetraborate solution contain the TiO2 stabile rutile modification that is important when utilizing such a structure as a catalyst carrier. Manganese acetate adding into the electrolyte leads to formation of layers that contain Mn2O3, Mn3O4 and TiO2-rutile in outer region. The manganese content in the surface layer depends on the formation conditions as well as on manganese acetate concentration in the electrolyte. Catalytic activity of the layers in CO → CO2 reaction is studied in the static and flow conditions. The manganese-containing layers obtained possess the catalytic activity in CO → CO2 oxidation reaction at the temperature range of 250-350 °C. The catalytic activity depends on the concentration and surface distribution of manganese as well as on the layers morphology.  相似文献   

9.
采用聚苯乙烯小球修饰Ti片表面,并进行阳极氧化,制备出一种由纳米颗粒和纳米管构成的TiO2膜.通过数值模拟,分析了氧化表面附近的局部电场分布对TiO2膜形貌的影响.结果表明,覆盖物增强了局部电场,从而加快了O2-与Ti的反应速率,有利于TiO2的生长;与此同时,[TiF6]6-的扩散受到阻碍,使得TiO2的溶解速率减慢.可见,覆盖物打破了TiO2纳米管形成的平衡条件,导致纳米颗粒的生成.此外,通过X射线衍射和Raman光谱的测试分析发现,所制备的TiO2为锐钛矿结构.  相似文献   

10.
Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target at low fluence. The topography and structure of the deposited layers are characterized using in situ high pressure RHEED and atomic force microscope (AFM). Based on these observations the growth mode of the films is discussed. The results will be compared to earlier results obtained for the growth of TiN films on (1 0 0) MgO.  相似文献   

11.
The oxidation of vanadium nitride (VN) and titanium nitride (TiN) coatings in ultra-high vacuum has been investigated in situ by X-ray photoelectron spectroscopy. On the VN coatings mixed oxide layers containing V3+ and V4+ species form at elevated temperatures (?600°C) and at high oxygen exposures, which cover completely the VN surface. Under similar oxidation conditions the TiN surface oxidises partially to a mixture of TiO2 and Ti oxynitride (TiOxNy) phases. This oxidation behaviour has been correlated to the tribological properties of the VN and TiN coatings investigated recently.  相似文献   

12.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

13.
TiO2-coated sericite powders were prepared by the chemical deposition method starting from lamellar sericite and TiCl4 in the presence or absence of La3+ cations. After calcination at 900 °C for 1 h, the resultant TiO2 nanoparticles on the sericite surfaces existed in anatase phase. The light scattering indexes of the TiO2-coated lamellar sericite powders were dozens of times higher than that of the naked lamellar sericite powders. The presence of La3+ in the deposition solution was beneficial to the formation of the small-sized anatase TiO2 nanoparticles, resulting in the formation of the dense and uniform island-like TiO2 coating layers in a large range of the weight ratios of TiO2 to sericite from 5% to 20%. The TiO2-coated lamellar sericite powders prepared in the presence of La3+ had higher light scattering index than that prepared in the absence of La3+. XPS analysis shows that when La3+ cations were absent in the reaction solution, TiO2 coating layers anchored at the sericite surface via the Ti-O-Si and Ti-O-Al bonds. The presence of La3+ cations caused the formation of Si-O-La and Al-O-La bonds at the sericite surface and Ti-O-La bond at the surface of TiO2 coating layers. After coating TiO2 on the sericite surface, the yellowness of the TiO2-coated sericite powders obviously increased and the brightness slightly decreased.  相似文献   

14.
TiO2-based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO2. After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 °C; while it increased slightly after heat treatment at 800 °C due to the crystallization of amorphous CaP and growth of TiO2. No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.  相似文献   

15.
Ti6Al7Nb has been used as an implant material because of its good corrosion resistance and high mechanical properties. However, the presence of aluminium (Al), which may lead to ostemalacia, anaemia and nervous system disorders, limited its wide clinical use. In this study, a titanium oxide (TiO2) nanoporous layer was fabricated on a Ti6Al7Nb alloy using an electrochemical anodic oxidation method. The structure of the TiO2 nanoporous layer was examined by scanning electron microscopy. The chemical compositions of the samples were analysed by X-ray photoelectron spectroscopy (XPS). Biocompatibility was evaluated by culturing rat osteoblast cells. The result showed that TiO2 nanoporous layers comprise a mixed oxide containing TiO2 and a small amount of nobium oxides (Nb2O5) and almost no elemental aluminium. The outer layer of the TiO2 nanoporous layer comprises highly ordered nanotubes and the inner layer forms disordered nanopores. The TiO2 nanoporous layer could support the adhesion, proliferation, differentiation and gene expression of osteoblast cells. Therefore, a TiO2 nanoporous layer could enhance the biocompatibility of Ti6Al7Nb alloy and is as a promising candidate for Ti6Al7Nb alloy implants.  相似文献   

16.
Photoactive TiO2 layers were formed by anodic oxidation of Ti in O2 RF plasma under various conditions and Ti surface pretreatment. The photocurrent spectrum in 1M NaOH was used to calculate the quantum efficiency of the photocurrent production and the band-gap energy for indirect transitions. Photoelectrochemical properties of TiO2 layers were studied on the decomposition of p-cresol water solution. The method of Ti surface pretreatment (mechanical polishing or chemical etching) has a decisive influence on the photoelectrochemical properties and the structure of the polycrystalline oxide, rutile, anatase or amorphous phase content.This study was supported by the Grant Agency for Sciences of Slovakia.  相似文献   

17.
Microarc oxidized (MAO) TiO2-based coatings containing Ca and P on titanium alloy were formed in electrolytes containing nano-hydroxyapatite (nano-HA), calcium and phosphate salts. The effects of HA concentration on the thickness, micropore size and number of the MAO coatings were not pronounced. However, the surfaces of the MAO coatings become rough and the crystallinity of anatase increases with increasing HA concentration. In addition, the Ca and P concentrations on the surfaces of the MAO coatings decrease, since the chelate complex of CaY2− (Y = [2(OOC)NCH2CH2N(COO)2]4−) and phosphate ions are hindered to be incorporated into the MAO coatings by HA. In vitro experiments indicate that the apatite-forming abilities of the MAO coatings decrease with increasing HA concentration. Furthermore, with increasing HA concentration, the solubility of Ca and P of the MAO coatings decreases, which could lower the supersaturation of the SBF with respect to apatite near the surfaces of the MAO coatings, further leading to the decreased apatite-forming ability. The results indicate that the HA addition in the electrolytes has an important effect on the structure and in vitro bioactivity of the MAO coatings.  相似文献   

18.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

19.
The TiO2–SiO2 thin film was prepared by self-assembly method by mixing SiO2 precursor with titanium precursor solution and aged to obtain a co-precipitation of silica and titanium crystals. Dip coating method was applied for thin film preparation on glass slide. The X-ray diffraction (XRD) of the self-assembly thin film had no characteristic property of SiO2 and even anatase TiO2 but indicated new crystal structure which was determined from the Fourier Transform Infrared Spectrophotometer (FTIR) as a hybridized Ti–O–Si bonding. The surface area and surface volume of the self-assembly sample were increased when SiO2 was incorporated into the film. The self-assembly TiO2–SiO2 thin film exhibited the enhanced photocatalytic decolorization of methylene blue (MB) dye. The advantages of SiO2 are; (1) to increase the adsorbability of the film and (2) to provide the hydroxyl radical to promote the photocatalytic reaction. The self-assembly thin film with the optimum molar ratio (SiO2:TiO2) as 20:80 gave the best performance for photocatalytic decolorization of MB dye with the overall efficiency of 81%.  相似文献   

20.
The effect of low pressure radio frequency (rf) plasma treatment on TiO2 surface states has been studied using X-ray photoelectron spectroscopy. Three different oxidation states of oxygen in untreated TiO2 powder were observed, which suggests the existence of adsorbed water and carbon on the surface. The ratio of oxygen to titanium (O/Ti) was decreased for the low ion dose plasma treated samples due to desorption of water from the surface. In the case of Ti 2p about 20% of surface states were converted to Ti3+ 2p3/2 state after plasma treatment with a very good stability, whereas untreated TiO2 remained mostly as Ti4+ state. A rapid decrease in the ratio of carbon to titanium (C/Ti) at TiO2 surface was also observed after plasma treatment and more than 90% of carbon atoms were removed from the surface. Therefore, the plasma treatment of TiO2 has advantages to surface carbon cleaning, increasing O and Ti3+ surface states, hence improving the activity of TiO2 for different environmental, energy and biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号