首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Silicon-on-insulator (SOI) wafers are commonly used to design microelectronics, energy conversion, and sensing devices. Thin solid films on the surfaces of SOI wafers have been a subject of numerous studies. However, SOI wafers modified by self-assembled monolayers (SAMs) that can also be used as functional device platforms have been investigated to a much lesser extent. In the present work, tert-butoxycarbonyl (t-boc, (CH3)3-C-O-C(O)-)-protected 1-amino-10-undecene monolayers were covalently attached to a H-terminated SOI (1 0 0) surface. The modified wafers were characterized by X-ray photoelectron spectroscopy to confirm the stability of the SAM/Si interface and the integrity of the secondary amine in the SAM. The transmission electron microscopy investigation suggested that this t-boc-protected 1-amino-10-undecene SAM produces atomically flat interface with the 2 μm single crystalline silicon of the SOI wafer, that the SiOx and both available Si/SiOx interfaces are preserved, and that the organic monolayers are stable, with apparent thickness of 1.7 nm, which is consistent with the result of the density functional theory modeling of the molecular features within a SAM.  相似文献   

2.
The covalent attachment of alkyl groups to silicon surfaces, via carbon-silicon bond formation, has been attempted using gas-surface reactions starting from Cl-terminated Si(1 1 1) or H:Si(1 1 1) under ultraviolet light irradiation. The formation of Cl-terminated Si(1 1 1) and its resulting stability were examined prior to deposition of organic molecules. High-resolution electron energy loss spectroscopy (HREELS) was utilized for detecting surface-bound adsorbates. The detection of photo-deposited organic species on Cl:Si(1 1 1) from gas-phase CH4 or CH2CH2 was not significant. On H:Si(1 1 1), it was evident that after the photoreaction with gas-phase C2H5Cl, C2H5 groups were chemically bonded to the surface Si atoms through single covalent bonds. The C2H5 groups were thermally stable at temperatures below 600 K. Alkyl monolayers prepared on silicon surfaces by dry process will lead to a new prospective technology of nanoscale fabrication and biochemical applications.  相似文献   

3.
We present an angle resolved ultraviolet photoemission spectroscopy study of the adsorption of 2-butyne (CH3-CC-CH3) on Si(0 0 1)-2 × 1 at room temperature. We recorded valence band photoemission spectra for two azimuthal positions of a vicinal silicon surface, where all the rows formed by the surface silicon dimers are parallel. The photoemission symmetry selection rules allow the determination of the orientation of the molecular orbitals. The photoemission signal of the HOMO is enhanced when the electric field is parallel to the dimer rows. This showed that the π orbital left intact after the cyclo-addition reaction of the molecule with one silicon dimer is parallel to the dimer rows. This indicates that each 2-butyne molecule adsorbs on one silicon dimer. In spite of the size of the system and the vicinity of the orbitals, the angle resolved study points out that no dispersion of the electronic bands occurs. Not all the surface dimers are reacted so some disorder still exists on the surface preventing the formation of Bloch states.  相似文献   

4.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

5.
Epitaxial Ni80Fe20(5 nm)/Ru(x nm)/Ni80Fe20(5 nm) trilayers with thickness x = 0.5-3.0 were prepared on Al2O3 substrate. The structure, magnetic properties and magnetic depth profiles of the epitaxial Ni80Fe20(1 1 1)/Ru(0 0 0 1) multilayers were studied by X-ray diffraction, X-ray magnetic circular dichroism and polarized neutron reflectivity. A strongly enhanced orbital moment of Fe in the permalloy layer was observed at the Ru thickness of the first anti-ferromagnetic coupling, which might be due to an interference between two interfaces. At this Ru thickness, the neutron reflectivity data show a 0.8 nm layer at the interface with the magnetic moment perpendicular to the surface plane, which might be due to the enhanced spin-orbital coupling at interface.  相似文献   

6.
Song Guo 《Surface science》2007,601(4):994-1000
Scanning tunneling microscopy (STM) is used to characterize partial monolayers of C60, C70, and C84 adsorbed on the Au(1 1 1) surface at room temperature and under ambient conditions. A high degree of structural polymorphism is observed for monolayers of each of these fullerenes. For C60, three lattice packings are observed, including a previously unreported 7 × 7 R21.8° structure that is stabilized by adjacent surface step defects. For C70, two lattice packings are observed, and analysis of molecular features in STM images allows molecular binding geometry to be determined. In one of the two observed lattice structures, C70 molecules align their long axis along the surface normal, while in the other, molecules align parallel to the surface and along a gold lattice direction. The parallel geometry is also preferred for isolated and loosely packed molecules on the surface. C84 exhibits a large number of lattice orientations and no long-range order, and likely binds incommensurately on Au(1 1 1). Time series of images of partial C70 monolayers show progressive surface modification as a result of perturbation by the STM tip; this is in contrast to the behavior of C60, where alterations in surface structure at room temperature are thermally driven.  相似文献   

7.
Temperature dependent dielectric relaxation and thermodynamic properties of polyethylene glycols HO[CH2CH2O)nH with number average molecular weight 200 (n = 4), 300 (n = 7), 400 (n = 9) and 600 (n = 14) g mol− 1 have been studied using Time Domain Reflectometry (TDR) in the frequency range 10 MHz to 20 GHz. The frequency dependence of the complex dielectric permittivity is analyzed by the Havriliak-Negami expression. The static permittivity ε0, high frequency limiting static permittivity ε, average relaxation time τ0 and thermodynamic energy parameters such as free energy, enthalpy of activation and entropy of activation have been determined. The average free energy of activation ΔFτ for PEG molecules was found to be in the range 4-5 kcal mol− 1. The values of entropy ΔSτ for PEG-200, PEG-400 and PEG-600 molecules were found to be positive while entropy ΔSτ for PEG-300 molecules was found negative, which confirms that the configuration of PEG-300 involved in the dipolar orientation has an activated state, which is more ordered than the normal state compared to PEG-200, PEG-400 and PEG-600 molecules.  相似文献   

8.
Exact numerical solutions of the time-dependent Schrödinger equation, TDSE, are presented for the H atom and H2/+ molecular ion ionized by short (10 optical cycles), intense I 0 ≥ 1014 W/cm2, 800 nm laser pulses. Calculations of the time dependent expectation values of the dipole moment d(t), velocity $ \dot d Exact numerical solutions of the time-dependent Schr?dinger equation, TDSE, are presented for the H atom and H2/+ molecular ion ionized by short (10 optical cycles), intense I 0 ≥ 1014 W/cm2, 800 nm laser pulses. Calculations of the time dependent expectation values of the dipole moment d(t), velocity (t), and acceleration (t) are used to identify the phase of these physical parameters with respect to the laser field during the harmonic generation process. It is found in general that electron wavepackets in an inner region near the parent ion are out of phase with the response expected from the classical laser induced recollision model, whereas wavepackets in an outer region, far from the parent ion, are in phase with the field force. It is found furthermore that it is the inner electron wavepacket which contributes mainly to the high order harmonic generation, HHG, process, even though its acceleration is out of phase with the field force. This suggests strong Coulomb refocussing effects in the HHG process, especially in the case of H2/+. Original Russian Text ? Astro, Ltd., 2009. In honor of Prof. N.B. Delone. The article is published in the original.  相似文献   

9.
We investigated the relation between work function and the adsorption structure of dicarboxylic acids (organic molecules) such as succinic acid (HOOC-CH2-CH2-COOH) and an adipic acid (HOOC-(CH2)4-COOH) on a Cu(1 1 0) surface (electrode) as a function of the surface temperature using a Kelvin probe (KP). The work function changes of the two acids are similar. The work function increases by adsorption at room temperature due to ionization of molecules and then decreases with increasing temperature until 450 K due to the effects of change in the dipole moment of the conformational change of the molecule. From 450 to 600 K, the work function is constant because of competition between desorption and change in the dipole moment of molecules. It then reached the clean-surface value. Experiments clarified that the work function was affected by the adsorbed difference in conformation of molecules.  相似文献   

10.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

11.
The nature of phosphonopeptides containing N-terminal l-phenylalanine (l-Phe), namely l-Phe-dl-NH-CH(CH(CH3)2)-PO3H2 (A), l-Phe-l-NH-CH(CH3)-PO3H2 (B), and l-Phe-dl-NH-CH(CH2CH2COOH)-PO3H2 (C) (Fig. 1 presents molecular structure of these molecules), adsorbed on electrochemically roughened and colloidal silver surfaces has been explored by surface-enhanced Raman spectroscopy (SERS). To reveal adsorption mechanism of these species on the basis of their SERS spectra at first Fourier-transform Raman (FT-RS) and absorption infrared (FT-IR) spectra of non-adsorbed molecules were measured. Examination of enhancement, frequency shifts, and changes in relative intensities of SERS bands due to adsorption and surface roughens variation reveals that the tilted compounds adsorb on the electrochemically roughened silver substrate in similar way, while they behave differently on the colloidal silver surface. A stronger enhancement of in-plane ring vibrations of the l-Phe ring, i.e., ν3 and ν18b (B2), over these of the A2 symmetry in all SERS spectra on the electrochemically roughened silver substrate suggests that the ring interacts with this surface adopting slightly deflect orientation from the perpendicular one. Also, enhancement of PO and -CH2-/-CH3 fragments vibrations points out that they are involved in adsorption process on this substrate. This conclusion was drawn on the basis of the enhancement of 1274-1279 and 1138-1152 (ν(PO)), 1393-1400 (δ(CH) + ρb(CNH2) + ν(C-CO) + δ(CH3)), ∼1455 (δ(CCH3/CCH2) + ρb(CH3/CH2), and 1505-1512 cm−1 (δ(CH2) + Phe(ν19a)) bands. Although a relative intensity ratio of these bands in the presented SERS spectra is different. On the other hand, on the colloidal silver nanoparticles, the aromatic ring of all molecules is lying flat or takes almost parallel orientation to this surface. Besides, A interacts also via P-terminal group (568, 765, 827, 1040, and 1150 cm−1), whereas B mainly through NH2-C-(CO)-CNH-(712 and 1255 cm−1). In the case of C, it adsorbs on the silver colloidal surface mainly through the aromatic ring of l-Phe, while other fragments of the molecule are in close proximity to this surface as comes off the weak enhancement of bands due to the aliphatic vibrations.  相似文献   

12.
The surface interaction of CO2 with the perovskite-type oxide LaMnO3+y has been investigated by means of density functional theory calculations and experimental measurements of adsorption isotherms in the temperature range 298-473 K. A (1 0 0) oriented slab of the cubic structure was used for modeling CO2 adsorption. The reference unit cell contains alternating LaO+ layers and layers; one slab is LaO+-terminated and the opposite surface is terminated. A Freundlich isotherm fitted the experimental data satisfactorily. Analysis of the isosteric heat revealed an energetically heterogeneous character for the lanthanum manganite oxide surface, mainly due to the degree of heterogeneity of the adsorption center and due to the adsorbate-adsorbate lateral interactions. Considering theoretical calculations and thermodynamical approaches, two types of active sites were found to be responsible for irreversible and reversible adsorption of CO2 as a function of surface coverage and O2 treatment. Strong adsorption takes place on the surface containing La cations. The strongest adsorption is associated with surface oxygen vacancies, center. The next strongest adsorption, a flat adaptation of CO2 molecules with respect to the surface sites, with a strong binding to a surface oxygen, leads to chemisorbed carbonate species. These adsorption modes are chiefly indicative of a high basic character of the lanthanum manganite oxide surface. Several cationic sites formed by lanthanum and manganese cations are able to weakly adsorb CO2 molecules in perpendicular or bridged forms. The latter adsorption modes suggest a weak acidic character of the manganite adsorbent.  相似文献   

13.
A new semi-empirical method for constructing the dipole moments of diatomic molecules as functions of the internuclear distance R $\varepsilon$ [0, ∞) is suggested. The dipole moment is described by a piecewise continuous function specified by a power-law polynomial with the asymptotic μ(R) → R 3 for small R, the dipole moment and its derivatives for equilibrium positions of nuclei in the molecule, and the results of ab initio calculations of the dipole moment for large R. The method is hydrogen halide molecules.  相似文献   

14.
For the stibine isotopologue , we report improved theoretical calculations of the vibrational energies below 8000 cm−1 and simulations of the rovibrational spectrum in the 0-8000 cm−1 region. The calculations are based on a refined ab initio potential energy surface and on a new dipole moment surface obtained at the coupled cluster CCSD(T) level. The theoretical results are compared with the available experimental data in order to validate the ab initio surfaces and the TROVE computational method [Yurchenko SN, Thiel W, Jensen P. J Mol Spectrosc 2007;245:126-40] for calculating rovibrational energies and simulating rovibrational spectra of arbitrary molecules in isolated electronic states. A number of predicted vibrational energies of are provided in order to stimulate new experimental investigations of stibine. The local-mode character of the vibrations in stibine is demonstrated through an analysis of the results in terms of local-mode theory.  相似文献   

15.
We have investigated ion desorption from adsorbed methane following keV He+ ion irradiation. The thickness of the adsorbed layer was precisely controlled. For mono-layered methane, only monomer ions (CHx+) were desorbed by 1 keV He+ ion irradiation. On the other hand, a large number of cluster ions (CnHx+) up to n = 20 were desorbed from multi-layered film. Among cluster ions, molecular ions with CC bonds were found, which indicates that chemical bonds are newly formed by ion irradiation. Based on the results for thickness dependences of the mass spectral patterns, it was elucidated that the monomer ions are desorbed from the top surface layer through single electron excitation. While the cluster ions are formed mainly in the inside of the layers along the nuclear track due to the high-density electronic excitation, which is produced by nuclear collision between incident He+ ions and frozen molecules.  相似文献   

16.
Erbium fluoride (ErF3) films were thermally deposited on Ge(1 1 1), Si(0 0 1) and copper mesh grid with different substrate temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the films. The structure of ErF3 films deposited on germanium and silicon changed from amorphous to crystalline with increasing the substrate temperature, while the crystallization temperature of the films on silicon is higher than that of on germanium. The infrared optical properties of the films change greatly with the evolution of crystal structure. It is also found that the morphology of ErF3 film on Ge(1 1 1) at 200 °C is modulated by the stress between the substrate and film. The SEM and TEM results confirmed that the ErF3 films on copper mesh grid were crystalline even at 100 °C. Interestingly, the ErF3 films show flower-like surface morphology when deposited on copper mesh at 200 °C. The crystallization temperature (Tc) of ErF3 films on the three substrates has the relation which is which is induced by the wetting angle of ErF3 films on different substrates.  相似文献   

17.
H. Ichikawa  K. Saiki 《Surface science》2006,600(17):236-239
The interaction between pentacene molecules and organic self-assembling monolayers formed on silicon oxides (SiO2) was studied by measuring the surface scattering time profile of the pulsed molecular beam of pentacene. It was found that the surface residence time (SRT) of pentacene was significantly reduced on a surface treated with hexamethyl silazarane (HMDS) compared with that on a bare SiO2 surface. The activation energies derived from the temperature dependence of the SRT were 24 kJ/mol and 100 kJ/mol for HMDS-SiO2 and the bare SiO2, respectively. A surface treated with octadecyltrichlorosilane (OTS) showed SRT values almost the same as those on the bare SiO2 surface, which was due to exposed SiO2 regions on the thermally-degraded OTS-SiO2. The growth mechanism with improved quality is due to the shallower adsorption potential and enhanced migration of pentacene by the surface alkylation.  相似文献   

18.
Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms (π-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of π-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.  相似文献   

19.
A xenon excimer lamp which irradiates vacuum ultra-violet (VUV) light at 172 nm in wavelength was applied to the photochemical surface conversion of n-octadecyltrimethoxysilane self-assembled monolayer (ODS-SAM) in the presence of atmospheric oxygen and subsequent multilayer fabrication. The terminal functional groups of ODS-SAM, -CH3 groups, were converted into polar functional groups, like -COOH, by the reaction with atomic oxygen species generated photochemically through VUV excitation of atmospheric oxygen molecules. The structure of the resulting organosilane multilayer with different numbers of superimposed monolayers (from 1 to 11), prepared on a smooth and hydrophilic silicon substrate by the layer-by-layer (LbL) approach, was examined in terms of molecular organization as well as the intra- or interlayer binding modes in such novel films. Ellipsometry and grazing angle X-ray reflectivity measurements revealed that multilayer films of up to 11 discrete monolayers were successfully obtained, indicating that the self-assembly is a viable technique for the construction of relatively thick (16 nm and above) multilayer films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号