首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemically anticorrosive behavior of 4‐methyl‐4H‐1, 2, 4‐triazole‐3‐thiol (MTTL) self‐assembled monolayers (SAMs) on the silver electrode was studied by means of electrochemical impedance spectroscopy (EIS) and polarization measurements. The promising inhibition effect of the MTTL for silver had been affirmed. Results of surface‐enhanced Raman scattering (SERS) experiments indicated that the MTTL molecule in a tilted orientation was self‐assembled on the silver surface through S6 and N2 atoms to form monolayers. An in situ electrochemical SERS experiment implied the changes of adsorption fashion of MTTL momolayers on the silver surface with the potential shifted to more negative direction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Electrochemically anticorrosive behaviors of 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTTL) monolayers self-assembled on copper surface have been investigated by electrochemical impedance spectroscopy (EIS), electrochemical polarization measurement and surface-enhanced Raman scattering (SERS) spectroscopy. The EIS mechanism of the copper surface adsorbed with 4-MTTL monolayers was fitted with the mode of R(QR)(QR)(CR). The electrochemical polarization experimental results indicated the high inhibitive efficiency of about 81.1%. Potential dependent SERS result suggests that 4-MTTL molecule was anchored at the copper surface via S6 and N2 atoms with a tilted orientation, which resulting in a strong interaction between the 4-MTTL molecule and copper surface. The molecule tended to experience a transition state of the adsorption at the copper surface via S6 atom only as the potential applied at −0.5 V vs. SCE.  相似文献   

3.
Surface‐enhanced Raman scattering (SERS) spectroscopy was applied to observe reduced L ‐glutathione [L‐Glut(R)] molecules self‐assembled on a silver surface and the effect of Pb2+ on them. The adsorption structure suggests that the mercapto group of the L‐Glut(R) molecule is covalently bonded to the silver surface along with the imine group, amino group and entire carboxyl group in a perpendicular orientation after self‐reorganization. Results of SERS experiment show that Pb2+ influences the structure of L‐glutathione monolayers as a result of the binding reaction possibly occurring between Pb2+ and the carboxyl and the amino groups. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The surface geometry of a methyl p-hydroxy benzoate (MPHB) molecule was studied by analysis of the SERS spectra adsorbed on silver colloid surfaces. For a reliable analysis of the SERS spectrum, we also performed density functional theoretical calculations. The large enhancement of the in-plane ring-stretching and ring-stretching modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a stand on orientation of MPHB on a silver surface.  相似文献   

6.
Monolayers of sulfanilamide on metallic surface can serve as an ideal model for understanding the interaction mechanism between the metal and the sulfanilamide molecule. In the present paper, the surface‐enhanced Raman scattering (SERS) technique was employed to obtain the SERS spectra of sulfanilamide monolayers formed on the silver surface under different pH values. Assignments of the spectra were carried out with the aid of density functional theory (DFT) calculations (BLYP/6‐311G). It can be found that the adsorption function of sulfanilamide on the silver surface was influenced by the pH value. The fully protonated sulfanilamide molecule adsorbed on the silver surface through N13H2 group and the benzene ring anchored in a relatively perpendicular manner leading to N7H2 and S10O2 groups near the surface, while the completely deprotonated sulfanilamide molecule attached on the silver surface via N7H2 and the benzene ring was perpendicular to, and the N13H2 and S10O2 groups were far from the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Adsorption of 4,4′‐thiobisbenzenethiol (4,4′‐TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface‐enhanced Raman scattering (SERS) for the first time, which indicates that 4,4′‐TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H‐atoms of the S H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4′‐TBBT in the two systems. It is inferred from the SERS signal that the two aromatic rings in 4,4′‐TBBT molecule are parallel to the colloidal silver surface as seen from the disappearance of νC H band (3054 cm−1), which is a vibrational mode to be used to determine the orientation of a molecule on metals according to the surface selection rule, while on the roughened silver electrode surface they are tilted to the surface as seen from the enhanced signal of νC H. The orientation of the C‐S bond is tilted with respect to the silver surface in both cases as inferred from the strong enhancement of the νC S. SERS spectra of 4,4′‐TBBT on the roughened silver electrode with different applied potentials reveal that the enhancement of 4,4′‐TBBT on the roughened silver electrode surface may be related to the chemical mechanism (CM). More importantly, the adsorption of 4,4′‐TBBT on the silver electrode is expected to be useful to covalently adsorb metal nanoparticles through the free S H bond to form two‐ or three‐ dimensional nanostructures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The nature of phosphonopeptides containing N-terminal l-phenylalanine (l-Phe), namely l-Phe-dl-NH-CH(CH(CH3)2)-PO3H2 (A), l-Phe-l-NH-CH(CH3)-PO3H2 (B), and l-Phe-dl-NH-CH(CH2CH2COOH)-PO3H2 (C) (Fig. 1 presents molecular structure of these molecules), adsorbed on electrochemically roughened and colloidal silver surfaces has been explored by surface-enhanced Raman spectroscopy (SERS). To reveal adsorption mechanism of these species on the basis of their SERS spectra at first Fourier-transform Raman (FT-RS) and absorption infrared (FT-IR) spectra of non-adsorbed molecules were measured. Examination of enhancement, frequency shifts, and changes in relative intensities of SERS bands due to adsorption and surface roughens variation reveals that the tilted compounds adsorb on the electrochemically roughened silver substrate in similar way, while they behave differently on the colloidal silver surface. A stronger enhancement of in-plane ring vibrations of the l-Phe ring, i.e., ν3 and ν18b (B2), over these of the A2 symmetry in all SERS spectra on the electrochemically roughened silver substrate suggests that the ring interacts with this surface adopting slightly deflect orientation from the perpendicular one. Also, enhancement of PO and -CH2-/-CH3 fragments vibrations points out that they are involved in adsorption process on this substrate. This conclusion was drawn on the basis of the enhancement of 1274-1279 and 1138-1152 (ν(PO)), 1393-1400 (δ(CH) + ρb(CNH2) + ν(C-CO) + δ(CH3)), ∼1455 (δ(CCH3/CCH2) + ρb(CH3/CH2), and 1505-1512 cm−1 (δ(CH2) + Phe(ν19a)) bands. Although a relative intensity ratio of these bands in the presented SERS spectra is different. On the other hand, on the colloidal silver nanoparticles, the aromatic ring of all molecules is lying flat or takes almost parallel orientation to this surface. Besides, A interacts also via P-terminal group (568, 765, 827, 1040, and 1150 cm−1), whereas B mainly through NH2-C-(CO)-CNH-(712 and 1255 cm−1). In the case of C, it adsorbs on the silver colloidal surface mainly through the aromatic ring of l-Phe, while other fragments of the molecule are in close proximity to this surface as comes off the weak enhancement of bands due to the aliphatic vibrations.  相似文献   

9.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The influence of Cl and NO3 anions on surface enhanced Raman scattering (SERS) of methyl orange adsorbed on “chemical pure” silver colloids was studied. It was found that NO3 could give rise to a large enhancement of SERS of methyl orange, while Cl could obviously weaken the SERS intensity of this molecule. Both quenching and enhancing effects were discussed and compared with each other. It indicated the coadsorbed process of these adsorbed species, and different adsorption behaviors of the molecules on silver surface directly resulted in the difference. In addition, the results of TEM pictures and UV-visible spectral experiments have also confirmed the conclusion above.  相似文献   

11.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The adsorption modes of 4‐amino‐3‐hydrazino‐5‐mercapto‐1,2,4‐trizole (purpald) self‐assembled monolayers (SAMs) formed on SERS‐active silver and gold electrodes were comparatively studied using surface‐enhanced Raman scattering (SERS), and the self‐assembling procedures were investigated by the Raman mapping technique. Purpald SAMs adopted a titled orientation with S, N2 atoms anchoring to the silver electrode and the  N7H2 close to the surface, whereas purpald stood up on the gold electrode through S, N5 atoms and with  N8H2 adjacent to the surface. The density functional theory (DFT) at the level of B3LYP was performed to help explain their different adsorption behaviors on the silver and gold electrodes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Surface enhanced Raman scattering (SERS) has been studied for pyridine molecules adsorbed at Ag electrodes covered with submonolayers of Cu (θ = 0.003 − 0.1). Depending on the amount of Cu coverage the frequencies of the breathing vibrations shift, and new breathing modes appear. Obviously two types of pyridine complexes are formed, differing in the nature of the bonding provided either by copper or silver surface atoms. The generation and quenching behaviour of SERS at rough electrodes evidence the importance of metastable atomic surface structures for SERS and indicate the cooperation of local and non-local enhancement processes. Since active sites can be stabilized with traces of Cu at the silver electrode, the enhancement factor on a molecular basis appears to be by one order of magnitude larger than earlier anticipated, and ranges from 2 × 106 to 1.6 × 107 for an exciting wavelength at 514.5 nm or 647.1 nm, respectively.  相似文献   

15.
张鹏翔  高小平  庄为平 《物理学报》1985,34(12):1603-1612
在银胶体中进行了苯甲酸、邻羟基苯甲酸(又名水扬酸)和对羟基苯甲酸的表面增强喇曼散射。得到并分析了这三种分子的增强喇曼谱。这三个分子都含有ν(C—CO2-)伸缩振动。水扬酸和对羟基苯甲酸是同分异构体,都含有ν(C—OH)伸缩振动,但处于不同位置上。借此我们分析了相对于表面不同距离和不同取向下的增强因子变化,并与纯电磁理论的球形颗粒模型进行了比较。发现了明显的分歧,讨论了可能的原因。还讨论了凝聚对增强因子的影响,并提出了控制胶体凝聚的可能途径。 关键词:  相似文献   

16.
IR, Raman and surface enhanced Raman scattering (SERS) spectra of 3,5‐dinitrosalicylic acid (DNSA) were recorded and analysed. The vibrational wavenumbers were computed by the ab initio method using RHF/6–21G* basis and they were found to be in good agreement with the experimental values. The effect of the concentration dependence on the SERS intensity of the molecule was studied. The molecular plane assumes a tilted orientation with respect to the silver surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A controllable roughened silver surface with high surface‐enhanced Raman scattering (SERS) activity and high reproducibility has been developed in this study. This silver surface was prepared by silver nucleation in polyelectrolyte multilayers (PEMs) and silver‐enlarged growth. First, the small Ag nuclei were synthesized by NaBH4 in situ reduction of Ag ions on a surface of PEMs. Then the small Ag nuclei formed were effectively enlarged by using a mixture of commercially available reagents named Li Silver . The optical properties and morphologies of the silver substrates have been investigated by ultraviolet–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). The UV–vis and AFM results revealed that the small Ag nuclei separately appeared on the PEMs after NaBH4 in situ reduction. The size of the enlarged Ag nanoparticles can be easily controlled with the immersing cycle in Li Silver. 4‐Mercaptopyridine (4‐MPY) and Rhodamine 6G (R6G) have been used as Raman probes to evaluate the properties of the new SERS substrates. It has been found that the enhancement factor of R6G reached ∼109 after treatment in Li Silver. Reproducibility has been investigated using the SERS signal intensity at 1094 cm−1 of 4‐MPY. Signals collected over multiple spots within the same substrate resulted in a relative standard deviation (RSD) of 6.38%, while an RSD of 10.33% was measured in signals collected from different substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a surface enhanced Raman spectra (SERS) detection platform for the widely used pesticide of triadimefon (TDF) is described. TDF is difficult to connect to the gold/silver SERS substrate, but the optical properties of the probe molecule 4‐mercaptobenzoic acid (4‐MBA), including the peak intensity and the peak position, are easily altered by the multiple weak interaction‐assisted SERS detection platform. The limit of detection (LOD) of this method is 1.0 × 10‐9 M, and the linear range is from 1.0 × 10‐6 M to 1.0 × 10‐9 M. The linear region is from 1.0 × 10‐6 M to 1.0 × 10‐9 M, described by the equation y = 884.01x + 2.24 with a correlation coefficient (R2) of 0.9990. Interference of foreign metal ions with higher concentrations than common mineral water is too weak to the determination. Furthermore, physical insights into the phenomena and the detection mechanism were obtained and investigated theoretically. The preferential conformation of the complex and reduced density gradient (RDG) calculation results indicated that the interactions between TDF and 4‐MBA consisted of multiple weak interactions through two hydrogen bonds and one van der Waals interaction. The intermolecular interaction was negative for the charge transfer from the SERS substrate to the probe molecule; thus, the peak intensity decreased. TDF interacts directly with the carboxyl of the probe molecule and consequently has an effect on the ring vibrations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the  NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
《Applied Surface Science》1987,27(4):482-486
The influence of O2 and H2O on the adsorption behavior of SO2 on surfaces of silver powders was studied by surface enhanced Raman scattering (SERS) at room temperature. The presence of H2O (∼103 Pa) and of O2 (∼104-105 Pa) is necessary to observe SERS peaks of surface species such as SO2-3 and SO2-4. These peaks disappeared on evacuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号