共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2O2CO3 nanosheet with a thickness of less than 20 nm was synthesized via hydrothermal and solvothermal process. The properties of the as-prepared nanosheet were characterized by X-ray diffraction, scanning electron microscopy, and diffuse reflectance spectra. The electronic structure was investigated using first-principle calculations. Application of the as-prepared Bi2O2CO3 nanosheet in photocatalysis was also studied. 相似文献
2.
E. Coetsee 《Journal of luminescence》2007,126(1):37-42
The degradation of the cathodoluminescence (CL) intensity of cerium-doped yttrium silicate (Y2SiO5:Ce) phosphor powders was investigated for possible application in low voltage field emission displays (FEDs). Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of commercially available Y2SiO5:Ce phosphor powders. The degradation of the CL intensity for the powders is consistent with a well-known electron-stimulated surface chemical reaction (ESSCR) model. It was shown with XPS and CL that the electron stimulated reaction led to the formation of a luminescent silicon dioxide (SiO2) layer on the surface of the Y2SiO5:Ce phosphor powder. XPS also indicated that the Ce concentration in the surface layer increased during the degradation process and the formation of CeO2 and CeH3 were also part of the degradation process. The CL intensity first decreased until about 300 C cm−2 and then increased due to an extra peak arising at a wavelength of 650 nm. 相似文献
3.
Si-qing Shen Qing Ma Zhi-bin Xu Jian-jun Xie Ying Shi Jian Wang Fei Ai 《Applied Surface Science》2011,258(5):1768
Tb3+-doped lutetium oxyorthosilicate (Tb:Lu2SiO5, LSO) films have been successfully fabricated on carefully cleaned silicon (1 1 1) substrates by Pechini sol–gel method combined with the spin-coating technique. X-ray diffraction (XRD), photoluminescence (PL) spectra and atomic force microscopy (AFM) were employed to characterize the resultant films. XRD patterns indicated that the films were crystallized into A-type LSO phase at 1000 °C, followed by a phase transition from A-type LSO to B-type LSO occurred at 1100 °C. The AFM observation revealed that the phosphor films were uniform and crack-free, consisting of closely packed grains with an average size of 200–300 nm. The PL spectra showed the characteristic emission 5D4 → 7FJ (J = 3–6) for Tb3+, The lifetime of Tb3+ in Tb:LSO films was 2.33 ms. The effect of heat-treatment temperature on the luminescent properties was also investigated. 相似文献
4.
L.G. Jacobsohn B.L. Bennett J.-K. Lee R.E. Muenchausen J.F. Smith B.P. Uberuaga D.W. Cooke 《Journal of luminescence》2007,124(1):173-177
The behavior of self-trapped defects (STDs) in ion-beam irradiated Lu2SiO5 (LSO) crystal has been investigated via temperature-dependent radioluminescence (RL) measurements. Production of oxygen vacancies is the major effect of H+ irradiation on luminescencent properties of this phosphor. Luminescence centers for self-trapped exciton (STE) and self-trapped hole emission are assigned to oxygen vacancies and oxygen ions, respectively. Ion-induced structural damage modifies the thermal stability of the STDs and creates perturbed STEs. A striking effect of ion irradiation is the approximate factor-of-two enhancement of STE RL intensity that results from implantation of only a thin (∼250 nm) surface layer of LSO. This enhancement is attributed to ion-beam modification of a surface dead layer. 相似文献
5.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved. 相似文献
6.
In the current work, TiO2 nanotube array was prepared via electrochemical anode method. Then the Bi2O3 nanoparticles were deposited onto the TiO2 nanotube array via dip-coating method from an amorphous complex precursor. The crystal structures were characterized via X-ray diffraction analysis. Their surface textures were observed via electron-scanning microscope. The prepared composite array electrode exhibited high photoelectrocatalytic activities towards degrading organic contaminants under visible light irradiation. High photoelectrocatalytic activities were also exhibited under UV light irradiation. The catalytic mechanism was discussed based on the analysis of electrochemical and degradation kinetics results. It is suggested a P (Bi2O3)-N (TiO2) junction was formed to increase the catalytic activates. The stability of the electrode materials was confirmed finally. 相似文献
7.
Han-Yu Hsieh 《Journal of luminescence》2009,129(6):595-4194
Manganese-doped zinc silicate (Zn2SiO4:Mn) is a kind of phosphor material that has a photo-luminescent (PL) and cathode-luminescent (CL) properties with intensive green light emission at 520 nm. The particles consisting of SiO2@Zn2SiO4:Mn (SiO2 core-Zn2SiO4:Mn shell) were synthesized via colloidal process and forced precipitation. After drying, the Zn/Mn precipitates were coated on the surface of SiO2 particles. The Zn/Mn precipitates reacted with SiO2 and transformed to Zn2SiO4:Mn by suitable calcination. The microstructure, crystalline phase, and luminescent characteristics of the products were studied. Besides, a CL device consisting of the core-shell powder was characterized. 相似文献
8.
The crystalline Eu0.25Y1.75SiO5 (EYSO) fine powders were prepared using metallorganic decomposition process, in which the pure X1- and X2-Y2SiO5 phases were obtained by calcining at temperatures from 850°C to 1600°C. The influence of calcining temperature on photoluminescence (PL) and thermal quenching were systematically investigated from room temperature to 573 K for the first time. As a consequence, the X2-EYSO was higher in light emission intensities than the X1-EYSO, but the X1-EYSO possessed better temperature dependence of PL. The phase structure had a significant effect on the light emission intensity and energy as well as its temperature characteristics in the EYSO. 相似文献
9.
10.
采用中频感应提拉法生长了高质量的Tm:Y2SiO5(Tm:YSO)晶体,测定了晶体的晶格常数和分凝系数.运用劳厄照相法确定了单斜晶系Tm:YSO晶体的三个偏振轴〈010〉,D1和D2,在室温下测量了三个偏振轴方向的吸收光谱、荧光光谱和荧光寿命,计算了晶体吸收峰的吸收线宽和吸收截面.研究发现,相对于其他两个偏振轴方向,D1方向在790nm处出现较强的吸收峰,
关键词:
2SiO5')" href="#">Tm:Y2SiO5
单斜晶系
吸收光谱
荧光光谱 相似文献
11.
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2. 相似文献
12.
Shuyun Kuang 《Applied Surface Science》2009,255(16):7385-7388
TiO2 nanotube (NT) arrays modified by Fe2O3 with high sensibility in the visible spectrum were first prepared by annealing anodic titania NTs pre-loaded with Fe(OH)3 which was uniformly clung to the titania NTs using sequential chemical bath deposition (S-CBD). The photoelectrochemical performances of the as-prepared composite nanotubes were determined by measuring the photo-generated currents and voltages under illumination of UV-vis light. The titania NTs modified by Fe2O3 showed higher photopotential and photocurrent values than those of unmodified titania NTs. The enhanced photoelectrochemical behaviors can be attributed to the modified Fe2O3 which increases the probability of charge-carrier separation and extends the range of the TiO2 photoresponse from ultraviolet (UV) to visible region due to the low band gap of 2.2 eV of Fe2O3. 相似文献
13.
E. Coetsee 《Applied Surface Science》2010,256(22):6641-10155
X-ray photoelectron spectroscopy (XPS) results were obtained for standard Y2SiO5:Ce phosphor powders as well as undegraded and 144 h electron degraded Y2SiO5:Ce pulsed laser deposited (PLD) thin films. The two Ce 3d peaks positioned at 877.9 ± 0.3 and 882.0 ± 0.2 eV are correlated with the two different sites occupied by Ce in the Y2SiO5 matrix. Ce replaced the Y in the two different sites with coordination numbers of 9 and 7. The two Ce 3d XPS peaks obtained during the thin film analysis were also correlated with the luminescent mechanism of the broad band emission spectra of the Y2SiO5:Ce X1 phase. These two different sites are responsible for the two main sets of cathodoluminescent (CL) and photoluminescence (PL) peaks situated at wavelengths of 418 and 496 nm. A 144 h electron degradation study on the Y2SiO5:Ce thin film yielded an increase in the CL intensity with a second broad emission peak emerging between 600 and 700 nm. XPS analysis showed the presence of SiO2 on the surface that formed during prolonged electron bombardment. The electron stimulated surface chemical reaction (ESSCR) model is used to explain the formation of this luminescent SiO2 layer. 相似文献
14.
Two different semiconducting bismuth sulfide (Bi2S3) nanostructures (feather-like Bi2S3 nanotubes and fiber-like Bi2S3 nanotubes) with diameters around 50-60 nm and lengths about tens of micrometers were prepared successfully by a chemical lithography route. The results indicated that the employment of polyvinylpyrrolidone led to the precursor with feather-like morphology and the acid had ripening effect on and etching action to the ultimate formation of the fiber-like Bi2S3 nanotubes. The photoluminescence spectra of two different Bi2S3 nanostructures revealed that the relative position of emission peaks was influenced by the thin edges of the feather-like nanotubes due to the quantum-confinement effect. 相似文献
15.
Haoyi Wu Guifang Ju Li Chen Xiaojuan Wang Zhongfu Yang 《Journal of luminescence》2011,131(12):2441-2445
The Ca2Al2SiO7 samples doped with Ce3+ and Eu2+ are synthesized via a high temperature solid-state reaction. Ca2Al2SiO7: Ce3+ emits a strong UV-violet emission while Ca2Al2SiO7: Eu2+ emits a blue-green emission. The Stokes shift of the latter is greater due to a stronger crystal repulsion from ligands to Eu2+ ions. Ca2Al2SiO7: Ce3+ exhibits a stronger initial intensity and longer duration of afterglow due to the higher liberated probability of the trapped carriers. The thermoluminescence curves reveal that at least three traps exist in the phosphors. Ca2+ vacancies may enhance the electron trapping and then lead to a stronger afterglow. A possible explanation will be provided. 相似文献
16.
Li ZhangYoshio Hashimoto Toshinori TaishiIsao Nakamura Qing-Qing Ni 《Applied Surface Science》2011,257(15):6577-6582
A novel flower-shaped Bi2O3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi2O3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi2O3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages. 相似文献
17.
The influence of SiO2 on the dielectric properties of barium titanate ceramics was investigated. SiO2 had been doped solely and together with BaO into barium titanate before calcination. X-ray diffraction showed that all the ceramics were of a pure perovskite phase after sintering at 1275 °C for 2 h. For SiO2-doping, there was about 2.5 °C increase in Curie temperature per molar percentage of doping and the leakage current was obviously increased, especially at low voltages for relatively high doping levels. While for the co-doping of SiO2 and BaO, there was little change in Curie temperature. The point defects formed through the dopings were proposed responsible for the effects. It was suggested that SiO2 is important to barium titanate ceramics not only for sintering but also for modifying their properties. 相似文献
18.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated. 相似文献
19.
20.
Zhijun Wang Baozhu YangPanlai Li Zhiping Yang Qinglin Guo 《Physica B: Condensed Matter》2012,407(8):1282-1286
A yellow phosphor, Sr3SiO5:Eu2+, was synthesized by a high temperature solid-state method. Sr3SiO5:Eu2+ exhibits a single yellow emission under the blue radiation excitation. However, Sr3SiO5:Eu2+ shows a two-peak emission under the ultraviolet radiation excitation when Eu2+ doping content is less than 0.01 mol. Moreover, the blue emission disappears and the yellow emission reaches the peak value when Eu2+ doping content is 0.01 mol. Namely, the energy transfer takes place between the Eu2+ activators, which is located at two different crystallographic sites in the Sr3SiO5. And the energy transfer mechanism is the dipole-dipole interaction. 相似文献