首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y. Cui 《Surface science》2009,603(20):3072-5472
The growth behavior of Ca on Si(0 0 1) has been studied with scanning tunneling microscopy and low energy electron diffraction. During the growth of the first atomic layer at elevated temperature, Ca induces several different ordered surface reconstructions. In order of ascending metal content, they are: a 2 × n (n = 3, 4, 5) phase that has limited long range order, a 2 × 6 striped phase, and a 1 × 3 phase. The 1 × 3 phase covers the entire surface at and beyond the point where Ca silicide island growth starts.  相似文献   

2.
The changes in morphology and chemical states of Si(1 0 0) surface upon dipping in ultrapure water were investigated by using atomic force microscope and X-ray photoelectron spectroscopy. The oxidation and the etching competitively progressed at the HF-treated Si(1 0 0) surface in ultrapure water, which made the smooth surface rough. However, the surface covered with a thick native oxide film was not etched at all. During the repetition of the oxidation and the etching, the SiO2-nuclei was, by chance, able to grow up to some size of islands and worked as the protective barrier against the water etching. Thus, the SiO2-islands would remain without being etched off, whereas rest parts of the surface could be etched off. This selective etching leads the surface morphology to become rough. Both the oxidation and the etching progressed violently as the water temperature and the dipping time increased.  相似文献   

3.
Casey C. Finstad 《Surface science》2006,600(17):3363-3374
The dissociation of NH3 on a Si(1 0 0) surface activated with Cl atoms was investigated using X-ray photoelectron spectroscopy. Gas phase UV-Cl2 (0.1-10 Torr Cl2 for 10-600 s under 1000 W Xe lamp illumination) completely replaced the H-termination on aqueous-cleaned Si(1 0 0) with 0.82 ± 0.06 ML of Cl at 298 K. A single spin-orbit split Cl 2p doublet indicated that the Cl atoms were bound to Si dimer atoms, forming silicon monochloride (Cl-Si-Si-Cl). Exposing the Cl-terminated surface at 348 K to NH3 (1-1000 Torr for 5-60 min) replaced one Cl atom with one N atom up to a coverage of 0.33 ± 0.02 ML. Cl atoms lowered the activation energy barrier for reaction to form a primary amine (Si-NH2). Oxygen was coadsorbed due to competition by H2O contamination. The presence of Cl on the surface even after high NH3 exposures is attributed to site blocking and electrostatic interactions among neighboring Cl-Si-Si-NH2 moieties. The results demonstrate a low temperature reaction pathway for depositing N-bearing molecules on Si surfaces.  相似文献   

4.
Thermal desorption at a chlorine-adsorbed Si(1 1 1) surface was measured with high precision. High-sensitivity measurements of the temperature dependence of the isothermal process, and thermal desorption spectra (TDS) with various parameters, heating rates and levels of surface coverage, indicated that the desorption is a second-order reaction with an activation energy of 2.2 eV. The wide dynamic-range data throw light on the ability of various methods of thermal desorption measurement to describe quantitatively the surface reaction. It is important to obtain a precise energy value, which can be done by considering the whole TDS shape, as well as isothermal data, in order to distinguish various reaction processes. Our results are consistent with model calculations.  相似文献   

5.
J.R. Ahn  K.-S. An 《Surface science》2006,600(12):2501-2504
The surface electronic structure of Sb/Si(1 1 3)2 × 5 was investigated by angle-resolved photoemission spectroscopy experiments. This reveals Sb/Si(1 1 3)2 × 5 to have three surface bands with anisotropic two-dimensional characteristics. The band widths of the surface bands along is larger than along . The number of surface bands of Sb/Si(1 1 3)2 × 5 and their band dispersions along and are quite analogous with those of Sb/Si(1 1 3)2 × 2 composed of Sb adatom and Si tetramer chains. The electronic structure analogy suggests that Sb/Si(1 1 3)2 × 5 and Sb/Si(1 1 3)2 × 2 have common building blocks such as Sb adatom and Si tetramer chains.  相似文献   

6.
Epitaxial graphene layers thermally grown on Si-terminated 6H-SiC (0 0 0 1) have been probed using Auger electron spectroscopy, Raman microspectroscopy, and scanning tunneling microscopy (STM). The average multilayer graphene thickness is determined by attenuation of the Si (L23VV) and C (KVV) Auger electron signals. Systematic changes in the Raman spectra are observed as the film thickness increases from one to three layers. The most striking observation is a large increase in the intensity of the Raman 2D-band (overtone of the D-band and also known as the G′-band) for samples with a mean thickness of more than ∼1.5 graphene layers. Correlating this information with STM images, we show that the first graphene layer imaged by STM produces very little 2D intensity, but the second imaged layer shows a single-Lorentzian 2D peak near 2750 cm−1, similar to spectra acquired from single-layer micromechanically cleaved graphene (CG). The 4-10 cm−1 higher frequency shift of the G peak relative to CG can be associated with charge exchange with the underlying SiC substrate and the formation of finite size domains of graphene. The much greater (41-50 cm−1) blue shift observed for the 2D-band may be correlated with these domains and compressive strain.  相似文献   

7.
The adsorption of S2 on the Si(1 1 1)-(7 × 7) surface and the interaction of copper and sulfur on this sulfur-terminated Si(1 1 1) surface have been studied using synchrotron irradiation photoemission spectroscopy and scanning tunneling microscopy. The adsorption of S2 at room temperature results in the passivation of silicon dangling bonds of Si(1 1 1)-(7 × 7) surface. Excessive sulfur forms Sn species on the surface. Copper atoms deposited at room temperature directly interact with S-adatoms through the formations of Cu-S bonds. Upon annealing the sample at 300 °C, CuSx nanocrystals were produced on the sulfur-terminated Si(1 1 1) surface.  相似文献   

8.
The initial stages of iron silicide growth on the Si(1 0 0)2 × 1 surface during solid-phase synthesis were investigated by photoelectron spectroscopy using synchrotron radiation. The experiments were made on iron films of 1-50 monolayer (ML) thickness in the temperature range from room temperature to 750 °С. Our results support the existence of three stages in the Fe deposition on Si(1 0 0) at room temperature, which include formation of the Fe-Si solid solution, Fe3Si silicide and an iron film. The critical Fe dose necessary for the solid solution to be transformed to the silicide is found to be 5 ML. The solid-phase reaction was found to depend on the deposited metal dose. At 5 ML, the reaction begins at 60 °С, and the solid-phase synthesis leads to the formation of only metastable silicides (FeSi with the CsCl-type structure, γ-FeSi2 and α-FeSi2). A specific feature of this process is Si segregation on the silicide films. At a thickness of 15 ML and more, we observed only stable phases, namely, Fe3Si, ε-FeSi and β-FeSi2.  相似文献   

9.
The initial stage of the thermal nitridation on Si (1 0 0)-2 × 1 surface with the low-energy nitrogen ion (200 eV) implantation was studied by photoemission spectroscopy (PES). The formation of nitride was shown the different characteristics depending on the annealing temperature. The disordered surface at room temperature was changed to 2 × 1 periodicity with the low-energy electron diffraction (LEED) as increasing the nitridation temperature. By decomposition of Si 2p spectrum, we can identify the three subnitrides (Si1+, Si2+, and Si3+). By changing the take-off angle of the Si 2p, we can increase surface sensitivity and estimate that Si1+, Si2+ and Si3+ are the interface states.  相似文献   

10.
The interaction of cobalt atoms with an oxidized Si(1 0 0)2 × 1 surface was studied by photoelectron spectroscopy with synchrotron radiation at room and elevated temperatures. The SiOx layer grown in situ on the crystal surface was ∼0.3 nm thick, and the amount of deposited cobalt was varied within eight atomic layers. It was found that Co atoms could penetrate under the SiOx layer even at room temperature in the initial growth. As the Co amount increased, a ternary Co-O-Si phase was formed at the interface, followed by a Co-Si solid solution. Silicide synthesis associated with the decomposition of these phases started under the SiOx layer at ∼250 °C, producing cobalt disilicide with a stable CaF2-type of structure.  相似文献   

11.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

12.
We report the formation of Si(1 1 3)-3 × 2 facets upon exposing oxygens on the Si(5 5 12) surface at an elevated temperature. These facets are found to form only for a limited range of oxygen exposure and exhibit a well-defined 3 × 2 LEED pattern. We also find the surface electronic state unique only to the facets in the valence band. The spectral feature of these electronic states and the behavior of a (1/3 1/2) LEED spot upon oxygen contents in the facets indicate that the formation is a heterogeneous mixture of the clean Si(1 1 3) facets free of oxygens and other facets containing oxygen atoms.  相似文献   

13.
Stilbene (1,2-diphenylethylene) has shown an intriguing isomerisation behavior and may serve as a model system for “molecular switches” incorporating a CC double bond. To evaluate the possible use of such molecules as molecular switches on semiconductor surfaces, the adsorption of cis- and trans-stilbene on Si(1 0 0) has been investigated. Identification of both isomers is achieved by differences in adsorption geometry as revealed by NEXAFS, and differences in electronic structure in the occupied and unoccupied molecular orbitals. For both isomers, bonding takes place via the CC double bond to the Si dimer atoms allowing for free movement of the aromatic rings, a necessary prerequisite for photoinduced isomerisation on the surface. Our experimental results agree well with theoretical calculations.  相似文献   

14.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

15.
The growth of thin subnanometric silicon films on TiO2 (1 1 0)-(1 × 2) reconstructed surfaces at room temperature (RT) has been studied in situ by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS), Auger electron and electron-energy-loss spectroscopies (AES and ELS), quantitative low energy electron diffraction (LEED-IV), and scanning tunneling microscopy (STM). For Si coverage up to one monolayer, a heterogeneous layer is formed. Its composition consists of a mixture of different suboxides SiOx (1 < x ? 2) on top of a further reduced TiO2 surface. Upon Si coverage, the characteristic (1 × 2) LEED pattern from the substrate is completely attenuated, indicating absence of long-range order. Annealing the SiOx overlayer results in the formation of suboxides with different stoichiometry. The LEED pattern recovers the characteristic TiO2 (1 1 0)-(1 × 2) diagram. LEED I-V curves from both, substrate and overlayer, indicate the formation of nanometric sized SiOx clusters.  相似文献   

16.
We achieved electron beam (e-beam) patterning without a photoresist on a Cl-terminated Si(0 0 1) surface. Synchrotron radiation photoemission spectroscopy and scanning photoelectron microscopy were employed to investigate the surface chemical state and pattern formation. The Cl-Si bonds were easily broken by the irradiation with an e-beam of 1 keV, leading to a pattern formation through the adsorption of residual molecules of water and hydrocarbon at the exposed Si dangling bond sites. In addition, we demonstrated the selective adsorption of desired molecules on the surface by e-beam irradiation in environments consisting of different gases, such as oxygen, ammonia, and 1-butanethiol.  相似文献   

17.
We have studied the effects of controlled ion bombardment on the electronic structure of the Si(0 0 1) surface. The surface was exposed to various doses of Ar+ ions accelerated towards the surface at 500 eV. X-ray photoelectron spectroscopy (XPS) spectra of the irradiated H-terminated Si(0 0 1) surface reveal the appearance of peaks that are associated with the presence of cleaved Si bonds. Ultraviolet photoelectron spectroscopy (UPS) spectra of the irradiated Si(0 0 1)2 × 1 surface show that the dimer dangling-bond surface state decays monotonically with increasing dose. These results, coupled with previous scanning tunneling microscopy (STM) studies, indicate that the breaking of dimers, and possibly the creation of adatom-like defects, during ion irradiation are responsible for the changes in the electronic structure of the valence band for this surface.  相似文献   

18.
S. Riikonen  A. Ayuela 《Surface science》2006,600(18):3821-3824
The metal-insulator transition observed in the In/Si(1 1 1)-4 × 1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [C. González, J. Ortega, F. Flores, New J. Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.  相似文献   

19.
Hai Gou Huang 《Surface science》2007,601(5):1184-1192
The adsorption configurations of pyrimidine and triazine on Si(1 1 1)-7 × 7 were investigated using high-resolution electron energy loss spectroscopy (HREELS) X-ray photoelectron spectroscopy and density functional theory calculations. The HREELS spectra of chemisorbed monolayer show the coexistence of the C(sp2)-H and C (sp3)-H stretching modes together with the observation of the unconjugated CN(C) vibrational feature suggesting that the carbon atom and its para-nitrogen atom of pyrimidine and triazine directly participate in binding with the surface to form Si-C and Si-N σ-linkages. The core levels of the C-atom and its opposite nitrogen atom directly binding with Si-atoms experience a down-shifting by 1.8-1.9 and 1.4-1.6 eV, respectively. These experimental findings are consistent with the density functional theory calculations indicating that the carbon atom and its para-nitrogen atom favorably link with the adjacent adatom and rest atom pair to form C-Si and N-Si linkages.  相似文献   

20.
The growth of ultrathin ZrO2 films on Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) has been studied with core level photoelectron spectroscopy and X-ray absorption spectroscopy. The films were deposited sequentially by chemical vapor deposition in ultra-high vacuum using zirconium tetra-tert-butoxide as precursor. Deposition of a > 50 Å thick film leads in both cases to tetragonal ZrO2 (t-ZrO2), whereas significant differences are found for thinner films. On Si(1 1 1)-(7 × 7) the local structure of t-ZrO2 is not observed until a film thickness of 51 Å is reached. On Si(1 0 0)-(2 × 1) the local geometric structure of t-ZrO2 is formed already at a film thickness of 11 Å. The higher tendency for the formation of t-ZrO2 on Si(1 0 0) is discussed in terms of Zr-O valence electron matching to the number of dangling bonds per surface Si atom. The Zr-O hybridization within the ZrO2 unit depends furthermore on the chemical composition of the surrounding. The precursor t-butoxy ligands undergo efficient C-O scission on Si(1 0 0), leaving carbonaceous fragments embedded in the interfacial layer. In contrast, after small deposits on Si(1 1 1) stable t-butoxy groups are found. These are consumed upon further deposition. Stable methyl and, possibly, also hydroxyl groups are found on both surfaces within a wide film thickness range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号