首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
The present paper demonstrates the preparation and characterization of SnO2 semiconductor quantum dots. Extremely small ∼1.1 and ∼1.4 nm SnO2 samples were prepared by microwave assisted technique with a frequency of 2450 MHz. Based on XRD analysis, the phase, crystal structure and purity of the SnO2 samples are determined. UV-vis measurements showed that, for the both size of SnO2 samples, excitonic peaks are obtained at ∼238 and ∼245 nm corresponding to ∼1.1 nm (sample 1) and ∼1.4 nm (sample 2) sizes, respectively. STM analysis showed that, the quantum dots are spherical shaped and highly monodispersed. At first, the linear absorption coefficients for two different sizes of SnO2 quantum dots were measured by employing a CW He-Ne laser at 632.8 nm and were obtained about 1.385 and 4.175 cm−1, respectively. Furthermore, the nonlinear refractive index, n2, and nonlinear absorption coefficient, β, were measured using close and open aperture Z-scan respectively using the same laser. As quantum dots have strong absorption coefficient to obtain purely effective n2, we divided the closed aperture transmittance by the corresponding open aperture in the same incident beam intensity. The nonlinear refraction indices of these quantum dots were measured in order of 10−7 (cm2/W) with negative sign and the nonlinear absorption coefficients were obtained for both in order of 10−3 (cm/W) with positive sign.  相似文献   

2.
Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold (Φth) of B4C was determined to be ∼1.9 J/cm2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<∼20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.  相似文献   

3.
A high-resolution (0.003 cm−1) infrared absorption spectrum of the first overtone of the fundamental mode ν8 of methylene fluoride (CH2F2) has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 2000 ro-vibration transitions in the range of 2770-2900 cm−1 with J ? 45 and Ka ? 20 have been assigned in this B-type band centered at 2838.5 cm−1. Precise value for the band origin (2838.579799 cm−1) and centrifugal distortion constants up to third order (ΦJK, ΦKJ, and ΦK) have been obtained by fitting a total of 1474 unblended ro-vibration transitions (J ? 45 and Ka ? 13) of the 2ν8 band with a standard deviation of 0.00029 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation. Signature of perturbations with nearby states has been seen.  相似文献   

4.
Carbon nanotubes (CNTs) were controllably coated with the uninterrupted CuO and CeO2 composite nanoparticles by a facile pyridine-thermal method and the high catalytic performance for CO oxidation was also found. The obtained nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction as well as X-ray photoelectron spectroscopy. It is found that the CuO/CeO2 composite nanoparticles are distributed uniformly on the surface of CNTs and the shell of CeO2/CuO/CNT nanocomposites is made of nanoparticles with a diameter of 30-60 nm. The possible formation mechanism is suggest as follows: the surface of CNTs is modified by the pyridine due to the π-π conjugate role so that the alkaline of pyridine attached on the CNT surface is more enhanced as compared to the one in the bulk solvent, and thus, these pyridines accept the proton from the water molecular preferentially, which result in the formation of the OH ions around the surface of CNTs. Subsequently, the metal ions such as Ce3+ and Cu2+ in situ react with the OH ions and the resultant nanoparticles deposit on the surface of CNTs, and finally the CeO2/CuO/CNT nanocomposites are obtained. The T50 depicting the catalytic activity for CO oxidation over CeO2/CuO/CNT nanocomposites can reach ∼113 °C, which is much lower than that of CeO2/CNT or CuO/CNT nanocomposites or CNTs.  相似文献   

5.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

6.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

7.
Photophysical and nonlinear optical properties of zinc phthalocyanines (ZnPc) bearing peripheral phenoxy substituents containing different functionalized groups were studied. Fluorescence spectra corresponding to the optical transition S1 → S0 are found to be appeared at 684 or 686.4 nm. Z-scan technique reveals large nonlinearities, where the absorptive and refractive effects are separately evaluated. Saturation absorption of ZnPc-1 was observed at 632.8 nm, with a very large nonlinear absorption coefficient β = −1.36 × 10−2 cm/W. However a strong nonlinear refractive effect was found in all ZnPcs (1-4). Transmitted versus incident irradiance measurements carried out on ZnPc-1 and ZnPc-2, showed a very clear optical limiting behavior with irradiance thresholds around be 44 W/cm2 and 90 W/cm2 respectively.  相似文献   

8.
A significant influence of microstructure on the electrochromic and electrochemical performance characteristics of tungsten oxide (WO3) films potentiostatically electrodeposited from a peroxopolytungstic acid (PPTA) sol has been evaluated as a function of annealing temperature. Powerful probes like X-ray diffractometry (XRD), transmission electron microscopy (TEM), UV-vis spectrophotometry, multiple step chronoamperometry and cyclic voltammetry have been employed for the thin film characterization. The as-deposited and the film annealed at 60 °C are composed of nanosized grains with a dominant amorphous phase, as well as open structure which ensues from a nanoporous matrix. This ensures a greater number of electroactive sites and a higher reaction area thereby manifesting in electrochromic responses superior to that of the films annealed at higher temperatures. The films annealed at temperatures ≥250 °C are characterized by a prominent triclinic crystalline structure and a hexagonal phase co-exists at temperatures ≥400 °C. The deleterious effect on the electrochromic properties of the film with annealing is ascribed to the loss of porosity, densification and the increasing crystallinity and grain size. Amongst all films under investigation, the film annealed at 60 °C exhibits a high transmission modulation (ΔT ∼ 68%) and coloration efficiency (η ∼ 77.6 cm2 C−1) at λ = 632.8 nm, charge storage capacity (Qins ∼ 21 mC cm−2), diffusion coefficient (6.08 × 10−10 cm2 s−1), fast color-bleach kinetics (tc ∼ 275 s and tb ∼ 12.5 s) and good electrochemical activity, as well as reversibility for the lithium insertion-extraction process upon cycling. The remarkable potential, which the film annealed at 60 °C has, for practical “smart window” applications has been demonstrated.  相似文献   

9.
The synthesis of tungsten oxide films with large surface area is promising for gas sensing applications. Thin WOx films were obtained by radio-frequency assisted pulsed laser deposition (RF-PLD). A tungsten target was ablated at 700 and 900 Pa in reactive oxygen, or in a 50% mixed oxygen-helium atmosphere at the same total pressure values. Corning glass was used as substrate, at temperatures including 673, 773 and 873 K. Other deposition parameters such as laser fluence (4.5 J cm−2), laser wavelength (355 nm), radiofrequency power (150 W), target to substrate distance (4 cm), laser spot area (0.7 mm2), and number of laser shots (12,000) were kept fixed. The sensitivity on the deposition conditions of morphology, nanostructure, bond coordination, and roughness of the obtained films were analyzed by scanning and transmission electron microscopy, micro-Raman spectroscopy, and atomic force microscopy.  相似文献   

10.
Superconducting polycrystalline BSCCO fibers of 2:2:1:2 nominal composition were grown by the electrically assisted laser floating zone (EALFZ) technique. An electric current density of 2.1 A cm−2 was applied through the solid/liquid (S/L) interface. A net effect of the fiber diameter on the as-grown microstructure and on the final superconducting properties is observed. A higher critical current density (∼2520 A cm−2) results for the thinner fibers (? = 1.7 mm) comparing to the value (∼1065 A cm−2) found for the wider ones (? = 2.5 mm). The steep axial thermal gradient at the S/L interface in the thinner fibers is responsible for its superior texture degree, a crucial parameter for improved current transport properties. Moreover, a Cu-free Bix(Sr,Ca)yOz phase crystallizes preferentially from the melt in the wider fibers, acting as obstacles to the current flux.  相似文献   

11.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

12.
The emission spectra of TiF have been reinvestigated in the 4200-15 000 cm−1 region using the Fourier transform spectrometer associated with the National Solar Observatory at Kitt Peak. TiF was formed in a microwave discharge lamp operated with 2.5 Torr of He and a trace of TiF4 vapor, and the spectra were recorded at a resolution of 0.02 cm−1. The TiF bands observed in the 12 000-14 000 cm−1 region have been assigned to a new transition, F4Δ-X4Φ. Each band consists of four sub-bands assigned as, 4Δ1/2-4Φ3/2, 4Δ3/2-4Φ5/2, 4Δ5/2-4Φ7/2, and 4Δ7/2-4Φ9/2. A rotational analysis of the 0-1, 0-0, and 1-0 bands has been obtained and spectroscopic constants have been extracted.  相似文献   

13.
Highly ordered W-MCM-48 mesoporous materials containing isolated W atoms in tetrahedral framework positions were successfully synthesized following the S+I pathway, up to a Si/W of 40. When tungsten content was increased up to a Si/W of 20, the ordered cubic structure was only partially maintained, and for a Si/W of 10 an amorphous phase was obtained. Highly isolated tetrahedral framework tungsten atoms in the W-MCM-48 with a Si/W of 40, have been identified by UV-vis band at 225 nm, IR-TF band at 970 cm−1 and XRD. The W 4f XPS results suggest that the tungsten atoms exist in two oxidation states, W4+ and W5+. The morphology of the samples varies as a function of tungsten content. The W-MCM-48 samples with a Si/W ratio of 40 existed as crystals with a unique crystalline morphology consisting of cubes truncated rhombic dodecahedrons belonging to the cubic Ia3d space group, while the samples with a Si/W ratio of 20 exhibited a different morphology consisting of spheres and cubes truncated by rhombic dodecahedrons. A comparison of samples with Si/W of ∞, Si/W of 40 and Si/W of 20 was performed using the conversion of MCP carried out at 450 °C under H2.  相似文献   

14.
We report a successful fabrication of c-axis oriented GdBa2Cu3O7−δ (GdBCO) films on the BaSnO3 (BSO) buffer layers on ion-beam assisted deposition (IBAD)-MgO template by pulsed-laser deposition (PLD). The (0 0 l) growth and in-plane textures of BSO buffer layers were found sensitive to the substrate temperature (Ts). With increasing the BSO layer thickness up to ∼165 nm, in-plane texture (Δ? ∼ 6.2°) of BSO layers was almost unaltered while completely c-axis oriented BSO layers were obtainable from samples with the thickness below ∼45 nm. On the BSO buffer layers showing in-plane texture of 6.2° and RMS surface roughness of ∼8.6 nm, GdBCO films were deposited at 780–800 °C. All GdBCO films exhibited Δ? values of 4.6–4.7°, Tc,zero of ∼91 K, and critical current density (Jc) over 1 MA/cm2 at 77 K in a self-field. The highest Jc value of 1.82 MA/cm2 (Ic of 51 A/cm-width) was achieved from the GdBCO film deposited at Ts of 790 °C. These results support that BSO can be a promising buffer layer on the IBAD-MgO template for obtaining high-Jc GdBCO coated conductors.  相似文献   

15.
The growth of thin Fe films deposited at oblique incidence on an iron silicide template onto Si(1 1 1) single crystal has been investigated as a function of Fe thickness (0 < tFe ? 180 monolayers (MLs)) and incidence angle (0 ? θ ? 80°). The growth mode is determined in situ by means of scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). Stripes oriented perpendicularly to the incident atomic flux are formed for θ ? 30°. Self-correlation functions are used to extract characteristic lengths from STM images. The correlation lengths in the direction of the incident flux (ξx) and perpendicular to the atomic flux (ξy) grow with different powers versus time (ξxtσ and ξytρ, with σ = 0.34 ± 0.03 and ρ = 0.67 ± 0.03) following the exact solution of the (1 + 1) dimensional Kardar-Parisi-Zhang (KPZ) equation. The root mean square roughness follows also a scaling law for tFe < 120 ML leading to a growth exponent β = 0.73 ± 0.02. Shadowing and steering effects are discussed on the basis of our STM data.  相似文献   

16.
Aluminium-doped zinc oxide (ZnO:Al) films were prepared by magnetron sputtering at different radio-frequency powers (Prf) of 50, 100, 150 and 200 W. The properties of the films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman microscopy, and spectrophotometry with the emphasis on the evolution of compositional, surface-morphological, optical, electrical and microstructural properties. XPS spectra showed that within the detection limit the films are chemically identical to near-stoichiometric ZnO. AFM revealed that root-mean-square roughness of the films has almost linear increase with increasing Prf. Optical band gap Egopt of the films increases from 3.31 to 3.51 eV when Prf increases from 50 to 200 W. A widening Egopt of the ZnO:Al films compared to the band gap (∼3.29 eV) of undoped ZnO films is attributed to a net result of the competition between the Burstein-Moss effect and many-body effects. An electron concentration in the films was calculated in the range of 3.73 × 1019 to 2.12 × 1020 cm−3. Raman spectroscopy analysis indicated that well-identified peaks appear at around 439 cm−1 for all samples, corresponding to the band characteristics of the wurtzite phase. Raman peaks in the range 573-579 cm−1 are also observed, corresponding to the A1 (LO) mode of ZnO.  相似文献   

17.
Scaling behavior of wrinkle evolution due to chemical etching of Au on stretchable substrate is studied by atomic force microscopy. The surfaces were etched with a small drop of KI solution. Scaling exponent α decreased with the etch time, from 0.93 to 0.62. For dynamic exponent β up to 30 min we find it to be 0.16 ± 0.05. Within the same time frame, the wavelength increases as ∼t0.23+−0.05 but drops at 45 min as ∼t−1.22+−0.42 and saturates. At this stage, we observe percolation island type features along with some wrinkles. The measured value of α at this stage is 0.62 ± 0.02; consistent with the percolation model. The wavelength coarsening at this stage suggests the existence of chemically driven spinodal decomposition. Our obtained value of α and β is consistent with the value of z obtained from correlation length which is given by ξ = t1/z. We find z = 4.87 ± 0.50. Our experiment suggests wrinkle formation in thin films on viscoelastic surface occurs in three stages.  相似文献   

18.
The current-voltage (I-V) characteristics of Al/p-Si Schottky barrier diodes (SBDs) with native insulator layer were measured in the temperature range of 150-375 K. The estimated zero-bias barrier height ΦB0 and the ideality factor n assuming thermionic emission (TE) theory show strong temperature dependence. Evaluation of the forward I-V data reveals an increase of zero-bias barrier height ΦB0 but decrease of ideality factor n with increase in temperature. The conventional Richardson plot exhibits non-linearity below 250 K with the linear portion corresponding to activation energy of 0.41 eV and Richardson constant (A*) value of 1.3 × 10−4 A cm−2 K−2 is determined from intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 A cm2 K2 for holes in p-type Si. Such behavior is attributed to Schottky barrier inhomogene ties by assuming a Gaussian distribution of barrier heights (BHs) due to barrier height inhomogeneities that prevail at interface. Also, ΦB0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of ΦB0 = 1.055 eV and σ0 = 0.13 V for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Thus, the modified versus q/kT plot gives ΦB0 and A* as 1.050 eV and 40.08 A cm−2 K−2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 40.03 A cm−2 K−2 is very close to the theoretical value of 32 A K−2 cm−2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/p-Si Schottky barrier diodes with native insulator layer can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights.  相似文献   

19.
The optical nonlinearity of styryl7 dye in ethanol solution at different concentrations has been studied using pulsed Nd:YAG laser at 532 nm as the source of excitation. The optical responses were characterized by measuring the intensity dependent refractive index (n2) of the medium using the Z-scan technique. The open aperture Z-scan trace of the dye in solution displayed saturable absorption. The closed aperture Z-scan trace of the dye exhibited a negative nonlinearity. The styryl7 dye at 1 mM concentration exhibited nonlinear refractive co-efficient n2 = −1.24 × 10−8 cm2/W, nonlinear absorption coefficient β = − 3.9 × 10−4 cm/W and real and imaginary parts of third-order nonlinear optical susceptibility χ3 = 3.26 × 10−6 esu in ethanol. These results showed that the dye has potential application in nonlinear optics.  相似文献   

20.
Line intensities, self- and air-broadened linewidths, pressure-induced shifts, and collisional narrowing coefficients were measured from 2 ? J′ ? 32 in the P branch of the O2A-band (12 975-13110 cm−1) utilizing Galatry line profiles. Spectra were recorded using the frequency-stabilized cavity ring-down spectrometer located at NIST, Gaithersburg, MD with a spectral resolution <0.0001 cm−1 and noise-equivalent absorption coefficient of 6 × 10−8 m−1 Hz−1/2. Line intensities, obtained from calibrated gas samples for 2 ? J′ ? 32, are ∼1% lower than the values in current spectroscopic databases. At higher J (18 ? J′ ? 32), the measured air- and self- broadened half widths are up to 20% lower than the extrapolated values given in HITRAN 2004, while corresponding half-widths for 2 ? J′ ? 15 are in better agreement. Available self-broadened half widths are fitted to empirical expressions with an rms of 0.8%. We discuss the implications of our results for accurate remote sensing of surface pressure and photon path length distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号