首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
The removal efficiency of Viscumalbum L. from lead containing aqueous solutions was investigated. The effect of adsorbent mass, pH of solution, initial Pb(II) concentration and temperature was investigated using a batch adsorption technique. The optimum pH for Pb(II) adsorption was found as 3.0 for Viscumalbum L. Results were analyzed by the Langmuir, Freundlich, Temkin and Harkins-Jura, equation using linearized correlation coefficient at different temperature. The characteristic parameters for each isotherm have been determined. The Langmuir model agrees very well with experimental data than the other models. According to Langmuir isoterm, the monolayer saturation capacity (Qo) is 769.23 mg/g at 25 °C. Models and the isotherm constant were evaluated depending on temperature. Thermodynamic parameters such as ΔHo, ΔSo and ΔGo were calculated. The adsorption process was found to be endothermic and spontaneous. The experimental data were analyzed using the first- and the second-order kinetic models. The rate constants of adsorption for both kinetics models have been calculated. The second-order model provides the best correlation of the data.  相似文献   

2.
Poly(acrylonitrile)/cellulose block copolymer (PAN-b-cell) was prepared by using a free radical initiating process and then the nitrile functional groups of the PAN blocks of the copolymers were transformed into amidoxime ligands. The resulting poly(amidoxime) ligands could complex with heavy metal ions; for example, the reflectance spectra of the [Cu -ligand]n+ was found to be at the highest absorbance, about 94%, at pH 6. The pH was the key parameter for metal ions sensing by the ligand. The adsorption capacity for copper was very good, 272 mg g?1, with a fast adsorption rate (t1/2 = 10 min). The adsorption capacities for other heavy metal ions such as Fe3+, Cr3+, Co3+ and Ni2+ were also good, being 242, 219, 201 and 195 mg g?1, respectively, at pH 6. The heavy metal ions removal efficiency from water was 98% at low concentration. The data proved that the heavy metal ions adsorption onto the polymer ligands were well fitted with the Langmuir isotherm model (R2>0.99), which suggests that the cellulose-based adsorbent surface namely the poly(amidoxime) ligand, was homogenous and a monolayer. The reusability was examined by a sorption/desorption process for six cycles and the extraction efficiency was determined. This new adsorbent could be reused for 6 cycles without any significant loss in its original removal function.  相似文献   

3.
Hydrogels based on cellulose-graft-poly (acrylic acid) copolymers (C-g-AA) were synthesized by graft copolymerization in a phosphoric acid solvent. Fourier transform infrared (FT-IR) spectra confirmed the structure of the C-g-AA. The adsorption behaviors of the hydrogels for Cu(II) and Ni(II) were investigated. The results showed that their adsorption capacity increased as the initial concentrations of metal ions and the pH value of the solution increased. Freundlich and Langmuir isotherm models were employed to analyze the data from batch adsorption experiments. The results indicated that there were very good correlation coefficients for their linearized equations. The maximum adsorption amounts of the hydrogels for the metal ions, based on the Langmuir model, were 182 and 200 mg/g for Cu(II) and Ni(II), respectively. When the initial concentration of metal ions was 1000 mg/g the actual adsorption amounts of the hydrogels for Cu(II) and Ni(II) were 181 and 183 mg/g, respectively.  相似文献   

4.
Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K2CO3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m2/g) and micropore volume (0.355 cm3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.  相似文献   

5.
This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.  相似文献   

6.
The adsorption of CO2 on metal oxides at ambient temperature received less study largely due to the small adsorption amount. However, the adsorption is of interest in refreshing the atmosphere of isolated spaces. It was shown in the present work that PbO was sensitive to low concentration CO2 in the presence of water. An XPS examination indicated that PbO changed to PbCO3 after the adsorption of CO2; therefore, the adsorption is chemical in nature. In order to enlarge the CO2 capacity, PbO was dispersed on the surface of a silica gel with large surface area (710 m2/g). Both CO2 capacity and adsorption rate indicated that the optimal dispersion manner of PbO is the mono-molecular layer surface coverage. Breakthrough experiments showed that the prepared adsorbent could effectively capture low-concentration CO2 at ambient temperature and pressure yielding a CO2 capacity of 59.1 mg g−1. The saturated adsorbent was regenerated on heating at 380 °C and the CO2 capability was recovered.  相似文献   

7.
Thiol-functionalized MCM-41 mesoporous silicas were synthesized via evaporation-induced self-assembly. The mesoporous silicas obtained were characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The products were used as adsorbents to remove heavy metal ions from water. The mesoporous silicas (adsorbent A) with high pore diameter (centered at 5.27 nm) exhibited the largest adsorption capacity, with a BET surface area of 421.9 m2 g?1 and pore volume of 0.556 cmg?1. Different anions influenced the adsorption of Cu(II) in the order NO3 ? < OAc? < SO4 2? < CO3 2? < Cit? < Cl?. Analysis of adsorption isotherms showed that Cu2+, Pb2+, Ag+, and Cr3+ adsorption fit the Redlich–Peterson nonlinear model. The mesoporous silicas synthesized in the work can be used as adsorbents to remove heavy metal ions from water effectively. The removal rate was high, and the adsorbent could be regenerated by acid treatment without changing its properties.  相似文献   

8.
An attempt at the use of rice husk ash, an agricultural waste, as an adsorbent of Zn(II) and Se(IV) from their aqueous solution is studied. Studies are carried out as a function of contact time, metal ion concentration, adsorbent dose, and pH at 25 °C. Its adsorption capability and adsorption rate are considerably higher and faster for Zn(II) ions than for Se(IV) ions. Zn(II) adsorption was found fast reaching equilibrium within ≃1 h while Se(IV) adsorption was slow reaching equilibrium within ≃100 h. The Bangham equation can be used to express the mechanism for adsorption. The experimental isotherm data were analyzed using Langmiur, Freundlich, and Temkin models. Desorption experiments were carried out using different media with a view to regenerate the spent adsorbent and to recover the adsorbed metal ion.  相似文献   

9.
In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe2O4-NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni2+) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni2+ ions and 10 mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data.  相似文献   

10.
The natural zeolite tuff (clinoptilolite) from a Serbian deposit has been studied as adsorbent for Ni(II) ions from aqueous solutions. Its sorption capacity at 298 K varies from 1.9 mg Ni g−1 (for the initial solution concentration of 100 mg Ni dm−3) to 3.8 mg Ni g−1 (for C0 = 600 mg Ni dm−3) and it increases 3 times at 338 K. The sorption is best described by the Sips isotherm model. The sorption kinetics follows the pseudo-second-order model, the activation energies being 7.44, 5.86, 6.62 and 6.63 kJ mol−1 for C0 = 100, 200, 300 and 400 mg Ni dm−3, respectively. The sorption involves a film diffusion, an intra-particle diffusion, and a chemical cation-exchange between the Na+ ions of clinoptilolite and the Ni2+ ions. The sorption is endothermic (ΔH° being 37.9, 33.4, 30.0, 27.7 and 24.3 kJ mol−1 for C0 = 100, 200, 300, 400 and 600 mg Ni dm−3, respectively) and spontaneous in the 298-338 K temperature range. Thermal treatment of the Ni(II)-loaded clinoptilolite results in the formation of spherical nano-NiO particles of approx. 5 nm in diameter which are randomly dispersed in the clinoptilolite lattice.  相似文献   

11.
Dendrimers are novel nanostructure materials that possess a unique three-dimensional molecular configuration. They have high adsorption capacities of heavy metals. Dendrimer-conjugated magnetic nanoparticles (Gn-MNPs) combining the superior adsorbent of dendrimers with magnetic nanoparticles (MNPs) have been developed for effective removal and recovery of Zn(II). In this study, the Gn-MNPs were synthesized, characterized, and examined as reusable adsorbents of Zn(II). Characterization conducted by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and elemental analysis revealed that dendrimers were successfully coated onto the surface of MNPs made of magnetite (Fe3O4). The pH effect studies indicate the Zn(II) adsorption with Gn-MNPs is a function of pH. The adsorption efficiency increases with increasing pH. At pH less than 3, Zn(II) is readily desorbed. Hence, the Gn-MNPs can be regenerated using the diluted HCl aqueous solution (0.1 M) where Zn(II) can be recovered in a concentrated form. It was found that the Gn-MNPs underwent 10 consecutive adsorption–desorption processes still retained the original removal capacity of Zn(II). The adsorption data were fitted well with both Langmuir and Freundlich isotherms. The maximum adsorption capacity determined by the Langmuir model is 24.3 mg/g at pH 7 and 25°C. A synergistic effect between the complexation reaction and the electrostatic interaction may account for the overall performance of Gn-MNPs.  相似文献   

12.
The goal of this study is to investigate the preparation of low-cost activated carbon from bean pods waste and to explore their potential application for the removal of heavy metals from aqueous solutions. Conventional physical (water vapor) activation was used for synthesizing the adsorbent. The obtained carbon was employed for the removal of As (III) and Mn (II) from aqueous solutions at different initial concentrations and pH values. Adsorption for both ions follows Langmuir-type isotherm, the maximum loading capacities for arsenic (III) and Mn (II) ions being 1.01 and 23.4 mg g−1, respectively. According to the experimental data, it can be inferred that the basic character of the surface, i.e. the high content of basic groups, favors adsorption of ions. Arsenic adsorption capacity on the carbon obtained from agricultural waste was found to be similar to this of more expensive commercial carbons showing high adsorption capability. Regarding manganese adsorption, herein obtained carbon presented higher uptake adsorption than that of activated carbons reported in the literature.  相似文献   

13.
Ion recognition-based separation techniques have received much attention because of their high selectivity for target ions. In this study, we have prepared a novel ion imprinted polymer (IIP) to remove nickel ions with high selectivity. The imprinted polymer was prepared by copolymerization of 2-hydroxy ethyl methacrylate (HEMA) with nickel vinylbenzoate complex in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The polymerization was carried out in bulk with free radical initiation using 2-methoxy ethanol as a solvent and porogen. The adsorbed nickel was completely eluted with 15 mL of 1 M HCl. Control polymer was also prepared by similar experimental conditions without using imprint ion. The above synthesized polymers were characterized by surface area measurements, FT-IR, microanalysis and SEM analysis. The adsorption capacity of IIP and CP was found to be 1.51 and 0.65 mmol g−1, respectively. The optimal pH for quantitative enrichment was 6.5. Nature of eluent, eluent concentration and eluent volume were also studied. The relative selectivity factor (αr) values of Ni(II)/Zn(II), Ni(II)/Cu(II) and Ni(II)/Co(II) were 78.6, 111.1 and 91.6, respectively. Five replicate determinations of 30 μg L−1 of Ni(II) gave a mean absorbance of 0.067 with a relative standard deviation of 1.06%. The lowest concentration determined by GTA-AAS below which the recovery becomes non-quantitative is 6 μg L−1. IIP was tested for removal of Ni(II) from sea water sample.  相似文献   

14.
In present work, a graphene oxide chemically modified with 2,2′-dipyridylamine (GO-DPA), was synthesized by simple, fast and low-cost process for the simultaneous adsorption of four toxic heavy metals, Pb(II), Cd(II), Ni(II) and Cu(II), from aqueous solutions. The synthesized adsorbent was characterized by FT-IR, XRD, XPS, SEM and AFM measurements. The effects of variables such as pH solution, initial ion concentrations, adsorbent dosage and sonicating time were investigated on adsorption efficiency by rotatable central composite design. The optimum conditions, specified as 8 mg of adsorbent, 20 mg L−1 of each ion at pH 5 and short time of 4 min led to the achievement of a high adsorption capacities. Ultrasonic power had important role in shortening the adsorption time of ions by enhancing the dispersion of adsorbent in solution. The adsorption kinetic studies and equilibrium isotherms for evaluating the mechanism of adsorption process showed a good fit to the pseudo-second order and Langmuir model, respectively. The maximum adsorption capacities (Qm) of this adsorbent were 369.749, 257.201, 180.893 and 358.824 mg g−1 for lead, cadmium, nickel and copper ions, respectively. The removal performance of adsorbent on the real wastewater samples also showed the feasibility of adsorbent for applying in industrial purposes.  相似文献   

15.
The adsorption of Cu(II) and Cr(III) ions by pure clay mineral, vermiculite, was examined in aqueous solution with respect to the adsorbent dose, initial metal ion concentration, pH, and contact time. The studies showed that vermiculite can be used as an adsorbent material for the moderate removal of Cr(III) and Cu(II) from aqueous solutions. Lagergren first-order, pseudo-second-order, and intraparticle diffusion models were used to describe the kinetic data. The kinetics of adsorption indicates that the process fitted well the intraparticle diffusion model.  相似文献   

16.
Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy (Ea) of Pb(II) adsorption was determined as 12.33 kJ mol−1 according to the Arrhenius equation. Various thermodynamic parameters such as ΔGads, ΔHads and ΔSads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.  相似文献   

17.
Akadama mud, consisting mainly of different forms of iron and aluminum oxide minerals, was used for arsenate (V) adsorption from aqueous solutions. The adsorption process fitted the first-order kinetic equation and the Langmuir monolayer model well. The adsorption capacity, estimated by the Langmuir isotherm model, was 5.30 mg/g at 20 ± 0.5 °C. The effects of the solution properties (initial concentration of As (V), pH, temperature, and mineralization degree) on As (V) removal were investigated. Various mineralization degrees in underground water were simulated by adjusting the ionic strength of the solution or adding coexisting ions to the contaminated solution. It was found that mineralization of the water significantly influenced the arsenic adsorption. The existence of multivalent metallic cations significantly enhanced the As (V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As (V) adsorption. This result suggests that Akadama mud is more suitable for arsenic adsorption in low-level phosphate and fluoride solutions. The loaded Akadama mud could be desorbed at polar pH conditions, especially in acidic conditions, and more than 65% As (V) sorption has been achieved at pH 1.  相似文献   

18.
The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of “cethyl trimethylammonium bromide” (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br ions.  相似文献   

19.
A new adsorbent named zirconium glyphosate [Zr(O3PCH2NHCH2COOH)2·0.5H2O, denoted as ZrGP] and its selective adsorptions to Pb2+, Cd2+, Mg2+ and Ca2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO4)2], ZrGP exhibited highly selective adsorption to Pb2+ in solution which contained Pb2+, Cd2+, Mg2+ and Ca2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg2+ and Ca2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.  相似文献   

20.
The active catalysts for methane formation from the gas mixture of CO2 + 4H2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO2 prepared by calcination of aqueous ZrO2 sol with Sm(NO3)3 and Ni(NO3)2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO2, and the activity for methanation increased by an increase in inclusion of Sm3+ ions substituting Zr4+ ions in the tetragonal ZrO2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号