首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

2.
An effective low-temperature growth method to fabricate hexagonally oriented ZnO nanorod arrays onto PET fabrics is reported. The effect of substrate pre-treatment and C6H12N4 concentration on the structure of ZnO nanorod arrays were investigated in details by X-ray diffraction (XRD), FE-SEM and ultraviolet protection factor (UPF). The results show that substrate pre-treatment, C6H12N4 concentration indeed have great influence on the growth of ZnO nanorod arrays. It is indispensable to introduce a ZnO seed layer on the substrate and under growth condition of n(C6H12N4):n[Zn(NO3)2] = 1:1, T = 90 °C, t = 3 h, the well-aligned ZnO nanorod arrays with 40-50 nm in diameter and 300-400 nm in length were achieved on the pre-treated PET fabrics. The ZnO nanorods grown on PET fabrics possessed an ultrahigh ultraviolet protection factor of 480.52 in this study, indicating an excellent protection against ultraviolet radiation in comparison with the untreated PET fabrics.  相似文献   

3.
A novel blue light emitting NaSr1 − xPO4:Eu2+x (x = 0.001 to 0.02) phosphors were prepared by solid-state reaction method to investigate its optical properties and thermal stability for its application in white light-emitting diodes (w-LEDs). The excitation and emission spectra of the prepared phosphor reveal a broad emission peak centered at 460 nm which arises due to 4f-5d transitions of Eu2+ upon the near ultra-violet (n-UV) excitation wavelength at 380 nm. The effect of Eu2+ doping concentration and sintering temperature on the emission intensity of NaSrPO4:Eu2+ was investigated along with its chromaticity coordinates. The temperature dependent luminescence properties of the prepared phosphor show better results than that of the commercial YAG:Ce3+phosphor. Besides, their XRD, FT-IR, SEM, TG, and DTA profiles have also been analyzed to explore its structural details.  相似文献   

4.
We report synthesis of a transparent magnetic semiconductor by incorporating Ni in zinc oxide (ZnO) matrix. ZnO and nickel-doped zinc oxide (ZnO:Ni) thin films (∼60 nm) are prepared by fast atom beam (FAB) sputtering. Both undoped and doped films show the presence of ZnO phase only. The Ni concentration (in at%) as determined by energy dispersive X-ray (EDX) technique is ∼12±2%. Magnetisation measurement using a SQUID magnetometer shows that the Ni-doped films are ferromagnetic, having coercivity (Hc) values 192, 310 and 100 Oe and saturation magnetization (Ms) values of 6.22, 5.32 and 4.73 emu/g at 5, 15 and 300 K, respectively. The Ni-doped film is transparent (>80%) across visible wavelength range. Resistivity of the ZnO:Ni film is ∼2.5×10−3 Ω cm, which is almost two orders of magnitude lower than the resistivity (∼4.5×10−1 Ω cm) of its undoped counterpart. Impurity d-band splitting is considered to be the cause of increase in conductivity. Interaction between free charges generated by doping and localized d spins of Ni is discussed as the reason for ferromagnetism in the ZnO:Ni film.  相似文献   

5.
Orderly aligned ZnO nanorod arrays were grown by the ultrafast laser assisted ablation deposition method. These nanorod arrays were further used to make efficient p-n heterojunction photodetector arrays, which have the potential to have nanoscale spatial resolution for imaging, unique incident polarization discrimination capability, and much improved quantum efficiency as well as detection sensitivity. Both front- and back-illumination photodetection schemes were demonstrated by growing those ZnO nanorod arrays on p-type silicon and p-type Zn0.9Mg0.1O-coated Al2O3 (0 0 0 1) substrates, respectively. Typical diode rectification behavior and photosensitivity were observed in both designs through I-V and photocurrent measurements.  相似文献   

6.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

7.
The Cu-doped ZnO films were prepared by direct current reactive magnetron sputtering using a zinc target with various Cu-chips attached. The influences of Cu-doping on the microstructure, photoluminescence, and Raman scattering of ZnO films were systematically investigated. The results indicate that ZnO films doped with moderate Cu dopant (2.0-4.4 at.%) can obtain wurtzite structure with strong c-axis orientation. The near band edge (NBE) emission of ZnO film can be enhanced by Cu dopant with a concentration of 2.0 at.% and quench quickly with further increase of doping concentration. Two additional modes at about 230 and 575 cm−1, which could be induced by Cu dopant, can be observed in Raman spectra of the Cu-doped ZnO films.  相似文献   

8.
The current study investigates the performance of dye-sensitized solar cells (DSSCs) based on Al-doped and undoped ZnO nanorod arrays synthesized by a simple hydrothermal method. Current density-voltage (J-V) characterizations indicate that Al-doping in ZnO crystal structure can significantly improve current densities and the energy conversion efficiency (η) of ZnO nanorod-based DSSCs. The maximum η, 1.34%, was achieved in DSSC when Al-doped ZnO nanorod arrays were grown in 0.04 M zinc acetate dihydrate solution with 5 mM aluminum nitrate nonahydrate. This result represents a large increase of η in Al-doped ZnO nanorod-based DSSCs as compared to undoped (0.05%). The improved DSSC photovoltaic performance can be attributed to two main factors: (1) increased light harvesting efficiency due to a large amount of N719 adsorbed on the large surface area of Al-doped ZnO nanorod arrays, and (2) increased electrical conductivity due to A13+ ion doped into the ZnO lattice at the divalent Zn2+ site, allowing electrons to move easily into the Al-doped ZnO conduction band.  相似文献   

9.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

10.
Well-aligned ZnO nanorod arrays have been successfully fabricated directly on anatase TiO2 nanoparticle films via low-temperature hydrothermal processes. The effects of the reactive time, temperature and reactant concentration on the growth of the as-prepared ZnO crystals are investigated in detail, and the possible mechanisms of crystal ZnO nanorod growth are also suggested. The results show that the low reactant concentration is in favor of the increase in the aspect ratio of crystal ZnO nanorods with weak orientation, while the long reactive time and high reactant concentration are useful to prepare well-aligned crystal ZnO nanorod arrays. Interestingly, the typically constructed composite films exhibit superhydrophilic characteristic without UV irradiation. Moreover, a strong near-ultraviolet PL band centering at about 385 nm and a weak green PL band centering at about 525 nm can appear at the room temperature.  相似文献   

11.
Zn1−xCuxO thin films (x=0, 1.0, 3.0, 5.0%) are prepared on quartz substrate by sol–gel method. The structure and morphology of the samples are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results show that Cu ions were effectively penetrated into the ZnO crystal lattices with substitutional and interstitial impurities to form stable solid solutions without changing the polycrystalline wurtzite structure. Two peaks at 420 nm (2.95 eV, violet), 485 nm (2.56 eV, blue) have been observed from the photoluminescence (PL) spectra of the samples. It is concluded that the violet peak may correspond to the exciton emission; the blue emission corresponds to the electron transition from the bottom of the conduction band to the acceptor level of zinc vacancy. The optical test shows that the optical band gap Eg is decreased with the increase amount of Cu doping in ZnO. The band gap decrease from 3.40 eV to 3.25 eV gradually. It is also found that the transmission rate is increased rapidly with the increase of Cu ions concentration.  相似文献   

12.
Nanoparticles of Co and Ni codoped zinc oxide, Zn0.9Co0.1−xNixO (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 °C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co2+ and Ni2+, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix.  相似文献   

13.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

14.
HfxZn1−xO thin films (x=3, 7, 10 and 15 mol%) were deposited on Si (1 0 0) using pulsed laser deposition. The influence of the Hf concentration on the microstructure and optical properties of the films was studied. It is found that Hf ions can be effectively doped into ZnO and all films crystallize in the hexagonal wurtzite structure with a preferred c-axis orientation. The lattice constants of HfxZn1−xO films increase with the Hf contents. Two ultraviolet peaks centered at about 364 and 380 nm coexist in the fluorescent spectra. With increasing the Hf contents, the intensity of fluorescent peaks enhances remarkably. At the same time the energy gaps gradually increase, while the positions of ultraviolet peaks remain unchanged. The mechanism of luminescent emission for HfxZn1−xO films was discussed.  相似文献   

15.
The Zn1−xYxO nanoparticles with good optical properties have been prepared by sol–gel method. The yttrium doping effect on the structures and optical properties were investigated by XRD, SEM, XPS and low temperature photoluminescence. The UV emission intensity of yttrium doped ZnO was over 300 times stronger than that of pure ZnO, which was an exciting result in enhancing the ultraviolet near band edge emission in photoluminescence from ZnO nanoparticles. The UV emission band of doped ZnO nanoparticles exhibits a red shift from 388 to 398 nm, indicating a shallow energy level near valence band has been formed due to the yttrium doping into ZnO lattices. The defect-related band is suppressed (ID/IUV = 1–0.83) considerably in Zn1−xYxO nanoparticles, revealing the quenching of the broad yellow-orange emission. The doping effect on the optical properties is investigated by temperature dependent photoluminescence. The experimental results indicated that the donor level of yttrium is deeper than that of undoped ZnO.  相似文献   

16.
In this work, Ni-doped ZnO (Zn1−xNixO, x=0, 0.03, 0.06, 0.11) films were prepared using magnetron sputtering. X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), temperature dependence electrical resistance, Hall and magnetic measurements were utilized in order to study the properties of the Ni-doped ZnO films. XRD and XAS results indicate that all the samples have a ZnO wurtzite structure and Ni atoms incorporated into ZnO host matrix without forming any secondary phase. The Hall and electrical resistance measurements revealed that the resistivity increased by Ni doping, and all the Ni-doped ZnO films exhibited n-type semiconducting behavior. The magnetic measurements showed that for the samples with x=0.06 and 0.11 are room-temperature ferromagnetic having a saturation magnetization of 0.33 and 0.39 μB/Ni, respectively. The bound-magnetic-polaron mediated exchange is proposed to be the possible mechanism for the room-temperature ferromagnetism in this work.  相似文献   

17.
Nickel-doped ZnO (Zn1−xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni has a chemical valence of 2+. According to the magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at ∼2 eV below the Fermi energy EF, which is of Ni 3d origin. No emission was found at EF, suggesting the insulating nature of the film.  相似文献   

18.
Y0.99−xPO4:0.01Dy3+, xBi3+ (x=0, 0.01, 0.05, 0.10, 0.15, 0.20 and 0.25) phosphors have been synthesized by a modified chemical co-precipitation method using urea as a pH value regulator. The samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples have only single tetragonal structure when x≤0.15, but extraneous BiPO4 phase appears besides major tetragonal phase when x≥0.20. The crystallinity of the samples is found to improve with increasing Bi3+ ion concentration from 0 to 15 mol%, and then decreased for higher concentrations associated with increasing BiPO4 phase. Photoluminescence excitation spectra results show that the phosphor can be efficiently excited by ultraviolet light from 250 to 400 nm including four peaks at 294, 326, 352 and 365 nm. Emission spectra exhibit strong blue emission (483 nm) and another strong yellow emission (574 nm). When the Bi3+ ion concentration is 1 mol%, the intensity of excitation and emission spectra increased evidently. In addition, the yellow-to-blue emission intensity ratio (IY/IB) is strongly related to the excitation wavelength and not to the Bi3+ ion concentration.  相似文献   

19.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

20.
Ni-doped ZnO powder was synthesized by thermal co-decomposition of a mixture of bis(acetylacetonato) zinc(II)hydrate and bis(dimethylglyoximato)nickel(II) complexes. The samples were characterised by X-ray diffraction (XRD), Energy dispersion X-ray fluorescence (EDXRF), and FT-IR spectroscopy. The atomic ratio Ni/Zn of the samples was determined by the EDXRF method to be 1%, 4.3%, 7.4% and 22.5 wt%. The XRD studies show the formation of nanocrystalline (14-18 nm) of Ni-doped ZnO along with nanoparticles of NiO. By magnetic measurements, it was observed that powder contains 1%Ni, 4.3%Ni, 7.4%Ni exhibits superparamagnetic behaviour while the sample of 22.5%Ni prepared in closed atmospheric environment shows clear ferromagnetic (FM) loop at room temperature due to the formation of solid solution Zn1−xNixO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号