首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

2.
Bifunctional magnetic-optical Fe3O4/ZnO nanocomposites with different molar ratio were successfully synthesized by a facile two-step strategy. Compared with the other methods, it was found to be mild, inexpensive, green, convenient and efficient. Fe3O4 nanocrystal was used as seed for the deposit and growth of ZnO nanoparticle. A series of the characterizations manifested that the combination of Fe3O4 with ZnO nanoparticles was successful. Photocatalytic activity studies confirmed that as-prepared nanocomposites had excellent photodegradating behavior to Methyl Orange (MO) compared to the pure ZnO nanoparticles. The results showed that the degradation percentage of MO was about 93.6% for 1 h when the amount of catalyst was 0.51 g L−1 and initial concentration of MO was 6 × 10−5 mol L−1 in the pH 7 solution. Moreover, the kinetics of photocatalytic degradation reaction could be expressed by the first-order reaction kinetic model. Furthermore, the Fe3O4/ZnO nanocomposites could be also served as convenient recyclable photocatalysts because of their magnetic properties.  相似文献   

3.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

4.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

5.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

6.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

7.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

8.
Co-Cu-Zn doped Fe3O4 nanoparticles can be successfully synthesized using a simple method. The particles in the size range 20−400 nm with different regular shapes i.e. sphere-like, regular hexane and tetrahedron are controllably achieved by changing the metal ion concentration. Compared to pure Fe3O4 without dopants, Co-Cu-Zn doped Fe3O4 nanoparticles exhibit better microwave absorbing properties at 2−18 GHz. Among three Co-Cu-Zn doped Fe3O4 nanoparticles with different morphologies, tetrahedral Co-Cu-Zn doped Fe3O4 nanoparticles represent a better dielectric loss in high frequency range. This work is believed the first known report of Co-Cu-Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties through the hydrothermal process without using any organic solvents, organic metal salts or surfactants.  相似文献   

9.
In this paper, a novel approach was successfully developed for advanced catalyst Ag-deposited silica-coated Fe3O4 magnetic nanoparticles, which possess a silica coated magnetic core and growth active silver nanoparticles on the outer shell using n-butylamine as the reductant of AgNO3 in ethanol. The as-synthesized nanoparticles have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), and have been exploited as a solid phase catalyst for the reduction of p-nitrophenol in the presence of NaBH4 by UV-vis spectrophotometry. The obtained products exhibited monodisperse and bifunctional with high magnetization and excellent catalytic activity towards p-nitrophenol reduction. As a result, the as-obtained nanoparticles showed high performance in catalytic reduction of p-nitrophenol to p-aminophenol with conversion of 95% within 14 min in the presence of an excess amount of NaBH4, convenient magnetic separability, as well as remained activity after recycled more than 6 times. The Fe3O4@SiO2-Ag functional nanostructure could hold great promise for various catalytic reactions.  相似文献   

10.
Magnetic nanocomposites can be controlled and tailored to provide the desired mechanical, physical, chemical, and biomedical properties depending on the final applications. The coating of ferrite nanoparticles with polymers affords the possibility of minimizing agglomeration in large-scale commercial synthesis of nanocomposite materials. The process of coating not only provides effective encapsulation of individual nanoparticles, but also controls the growth in size, thus, yielding a better overall size distribution. In this paper, in-situ polymerization of aniline was carried out in different concentration of the ferrofluid with the aim to obtain agglomerate free nanocomposites. The role of the ferrite concentration was investigated by the spectral, morphological, conductivity, and magnetic properties of Fe3O4/polyaniline (PANI) nanocomposites. XRD revealed the presence of spinel phase of Fe3O4 and the particle size was calculated to be 14.3 nm. Spectral analysis confirmed the formation of PANI encapsulated Fe3O4 nanocomposite. Conductivity of the nanocomposites was found to be in the range of 0.001–0.003 S/cm. Higher saturation magnetization of 3.2 emu/g was observed at 300 K, revealing a super paramagnetic behavior of this nanocomposite.  相似文献   

11.
H. He  Y. Ding 《Applied Surface Science》2009,255(8):4623-4626
In this paper, fluorescent-magnetic Fe3O4@LaF3:Ce,Tb nanocomposites were synthesized by combining fluorescent LaF3:Ce,Tb and magnetic Fe3O4 nanoparticles into new ‘two-in-one’ entities. The obtained Fe3O4@LaF3:Ce,Tb nanocomposites were small (about 30 nm in diameter) and well dispersed in water. Under ultraviolet light irradiation, the Fe3O4@LaF3:Ce,Tb nanocomposites emitted bright green fluorescence, and they could be easily manipulated by an external magnetic field. Such bifunctional nanocomposites may find many biomedical applications, such as cancer detection and drug delivery. And the method we used can be extended to the synthesis of other nanocomposites based on lanthanide-doped materials and metal oxides.  相似文献   

12.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

13.
The development of a highly effective and recyclable antibacterial agent is of great interest. In this work, magnetic Fe3O4/Ag antibacterial nanoagent was successfully fabricated through a facile surface functionalization approach. Utilizing the strong interaction between silver and the amino groups on the surface of Fe3O4 nanospheres, the nanosized silver particles were tightly bonded on the Fe3O4 nanospheres' surface, improving silver nanoparticals? antibacterial activity by preventing agglomeration of silver nanoparticles. Our antibacterial tests showed that the as-synthesized Fe3O4/Ag nanospheres presented high antibacterial performance against Gram-negative and Gram-positive bacteria. Moreover, these antibacterial nanohybrids can be easily recycled from water solution by applying an external magnetic field. Overall, taking into consideration the facile preparation method, excellent antibacterial activity and high magnetic recycling property, the as-synthesized Fe3O4/Ag nanospheres have great potential applications in medicine and water disinfection.  相似文献   

14.
CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol–gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.  相似文献   

15.
After hollow microspheres (HM) were surface modified, a layer of electromagnetic polyaniline/Fe3O4 composite (PAN/Fe3O4) was successfully grafted onto the surface of the self-assembled monolayer coated HM, resulting in HM/PAN/Fe3O4 composites. In this approach, γ-aminopropyltriethoxy silane was adopted to form a well-coating monolayer with amino groups for the graft polymerization of aniline, which played an important role in fabricating the core-shell structure. FeCl3 was used as the oxidant not only for aniline to form PAN, but also for FeCl2 to prepare the magnets. The structure, morphologies, and magnetic properties of the as-prepared samples were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The results indicated that the HM/PAN/Fe3O4 composites possess low density (ρ < 1.0 g/cm3), controllable morphology, and good magnetic properties at room temperature (saturation magnetization Ms = 8.32 emu g−1 and coercive force Hc ≈ 0).  相似文献   

16.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

17.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

18.
Co1−xNix/2Srx/2Fe2O4 (x=0–0.5 in steps of 0.1) ferrite nanoparticles have been synthesized at room temperature, without calcination, using a reverse micelle process. The site preference was determined by Mössbauer spectroscopy at 300 K. The hyperfine parameters were obtained, for the whole series of solid solutions. For the X≤0.20 samples, the spectra were fitted with two discrete sextets and for the X>0.20 samples, a magnetic hyperfine field distribution and a doublet were also imposed in the fit procedure. Hysteresis loops were measured using a superconducting quantum interference device magnetometer at 2 K and 300 K. The results indicate that the relative decrease in saturation magnetization of nanoparticles compared to the submicron particles could be attributed to a surface spin termination and disorder. Magnetic dynamics of the nanoparticles was studied by the measurement of ac magnetic susceptibility versus temperature at different frequencies and it is found that the results are well described by the Vogel–Fulcher model.  相似文献   

19.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

20.
Superparamagnetic nanoparticles of the spinel ferrite four-element system Mn1−xZnx[Fe2−yLy]O4 (where L:Gd3+, La3+, Ce3+, Eu3+, Dy3+, Er3+,Yb3+) were synthesized by the co-precipitation method. The magnetic moments of the 10 nm diameter nanoparticles were comparable to the ones of Fe3O4 nanoparticles. A comparatively low TC (∼52–72 °C) was observed for some of the compositions. The heating mechanism of the superparamagnetic particles in the AC magnetic field at radiofrequency range is discussed and especially the absence of the hysteresis loop in the M–H curve at room temperature. One possible explanation—spontaneous particle agglomeration—was experimentally verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号