首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti6Al4V alloy was implanted with oxygen by using plasma based ion implantation (PBII) at pulsed voltage ranging from −10 to −50 kV with a frequency of 100 Hz. In order to maintain a lower implantation temperature, an oil cooling working table was employed. The structure of the modified layers was characterized by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results show that the thickness of the titanium oxide layer increases significantly with the increase of implanted voltage. The structure of the modified layer changes along depth. It is found that the surface layer consists of TiO2, and the subsurface layer is a mixing structure of TiO2, Ti2O3 and TiO. There is crystalline rutile phase existing in the modified layer of sample implanted at high implanted voltage. In addition, in the outmost modified surface, aluminum present as oxidized state, and vanadium could not be detected.  相似文献   

2.
The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of −30 kV and doses of 3, 6, 9 and 12 × 1017 ions/cm2, respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO2, Ti2O3, TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 × 1017 He/cm2, the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 × 1017 He/cm2, there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose.  相似文献   

3.
In order to study the effect of titanium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with titanium ions with fluence ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc (MEVVA) source at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with titanium ions. The larger the fluence, the better is the corrosion resistance of implanted sample. Finally, the mechanism of the corrosion behavior of titanium-implanted zirconium was discussed.  相似文献   

4.
AZ31 samples were implanted with yttrium ions with fluences of 5 × 1016, 1 × 1017 and 5 × 1017 ions/cm2, using a metal vapor vacuum arc source at an extraction voltage of 45 kV. The surfaces of the implanted samples were then analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It was found that after treatment a pre-oxidation layer was formed, and the higher the fluence, the thicker the pre-oxidation layer was. The valence states showed that yttrium existed in the form of Y2O3. Isothermal oxidation tests have been conducted in pure oxygen at 773 K for 90 min to evaluate the oxidation behavior of the implanted samples. The results indicate that after implantation the oxidation resistance of the samples was significantly improved. Moreover, the greater the fluence, the better the oxidation resistance has been achieved. The characterization of the implanted layers after isothermal oxidation was examined by SEM, AES and XPS. From the results, it can be found that the thickness of the oxide scale formed on the implanted surfaces have been greatly decreased, and there is no obvious change for both the thickness of the pre-oxidation layer and the valence states of the elements after oxidation.  相似文献   

5.
In order to study the effect of copper ion implantation on the aqueous corrosion behavior, samples of zircaloy-4 were implanted with copper ions with fluences ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) operated at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-4 in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 implanted with copper ions when the fluence is smaller than 5 × 1016 ions/cm2. The corrosion resistance of implanted samples declined with increasing the fluence. Finally, the mechanism of the corrosion behavior of copper-implanted zircaloy-4 was discussed.  相似文献   

6.
Poly(ethylene terephthalate) (PETP) was treated by plasma immersion ion implantation (PIII or PI3) in nitrogen. The surface changes were characterised by XPS and water contact-angle measurements. Sliding tribological properties of untreated and nitrogen PIII-treated PETP against conventional low carbon structural steel S235 were studied under dry and water-lubricated conditions by a pin-on-disc tribometer.XPS results suggested the evolution of surface composition and bonding towards those of amorphous hydrogenated carbon-nitride. Water contact-angle decreased implying increased surface wettability. At a very low Pv factor (0.0075 MPa m s−1) for the nitrogen PIII-treated PETP the dry friction coefficient was smaller than, while the lubricated friction coefficient was similar to, the corresponding value of the untreated variant. At higher Pv factors (near 0.1 MPa m s−1), however, both the dry and lubricated friction coefficients were higher for the treated sample than for the untreated variant, suggesting an increased adhesion component of friction for the nitrogen PIII-treated PETP in this region.  相似文献   

7.
Surfaces of two γ-TiAl alloys, Ti-47 at% Al-2at% Nb-2 at% Cr (MJ12) and Ti-47 at% Al-2 at% Nb-2 at% Mn + 0.8 at% TiB2 (MJ47), have been modified by acetylene plasma deposition at bias voltages of −4, −5 and −6 kV for 3.6 × 103 s (1 h) and 1.44 × 104 s (4 h). Knoop hardness (HK) of the alloys is increased with the increase of bias voltage and prolonged time for the deposition. HK of MJ12 and MJ47 deposited at −6 kV for 1.44 × 104 s is, respectively, 3.36 and 3.32 times as hard as the untreated alloys. SEM and AFM analyses show that the deposited alloys compose of a number of nano-dots which reflect their surface properties. The phases analyzed by XRD are in accord with the elements analyzed by EDX.  相似文献   

8.
Nitrogen ions were implanted into SiC ceramics by using ion implantation technology (N+-SiC). The surface structure and chemical bonds of N+-SiC ceramics were determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their nanohardness was measured by nanoindenter. The friction and wear properties of the N+-SiC/SiC tribo-pairs were investigated and compared with those of SiC/SiC tribo-pairs in water using ball-on-disk tribo-meters. The wear tracks on the N+-SiC ceramics were observed by non-contact surface profilometer and scanning electron microscope (SEM) and their wear volumes were determined by non-contact surface profilometer. The results show that the N+-SiC ceramics were mainly composed of SiC and SiCN phase and SiN, CC, CN and CN bonds were formed in the implantation layer. The highest hardness of 22.3 GPa was obtained as the N+-SiC ceramics implanted at 50 keV and 1 × 1017 ions/cm2. With an increase in nitrogen ion fluence, the running-in period of N+-SiC/SiC tribo-pairs decreased, and the mean stable friction coefficient decreased from 0.049 to 0.024. The N+-SiC ceramics implanted at 50 keV and 5 × 1017 ions/cm2 exhibited the excellent tribological properties in water. In comparison of SiC/SiC ceramic tribo-pairs, the lower friction coefficient and lower wear rate for the N+-SiC/SiC tribo-pairs were acquired.  相似文献   

9.
Surfaces of two gamma-TiAl alloys, Ti-47%Al-2%Nb-2%Cr (MJ12) and Ti-47%Al-2%Nb-2%Mn + 0.8%TiB2 (MJ47), were modified by acetylene plasma deposition at −3 kV bias voltage for 0.5-4 h. By using GIXRD and SAED, C (n-diamond), TiC, Al, AlTi, AlTi2, AlTi3, Al0.64Ti0.36 and Al2Ti were detected on both alloys. Additional TiB2 was detected on MJ47. XPS and Raman analyses revealed the presence of sp3 and sp2 carbon deposited on the alloy surfaces with their binding energies of 283.9-284.8 eV for MJ12 and 283.9-285.0 eV for MJ47. Both sp3 and sp2 contents were increased with the increase in the exposure times. The increasing rate of the first was less than that of the second, due to the stress developed in the films. Moiré fringe and crystallographic planes were detected using TEM. Knoop hardness of the deposited alloys, influenced by sp3 carbon, was increased with the increase in the exposure time. Those of MJ12 and MJ47 with 4 h deposition are 1.88 and 1.57 times of the corresponding untreated alloys, respectively.  相似文献   

10.
Doppler broadening spectroscopy (DBS) coupled to a slow positron beam has been used to investigate the formation of He-cavities in the presence of high vacancy concentrations in Cz-Si (1 1 1). Si samples were first implanted with MeV Si ions in order to create a damaged Si layer. DBS measurements show the presence of divacancy (SV2/SSilattice=1.052,WV2/WSilattice=0.83) from the surface up to 4.2 μm depth with a concentration higher than 1018 cm−3. The thickness of this damaged layer was confirmed by spreading resistance measurements. In the second step, samples were implanted with 50 keV 3He with fluence of 1016 cm−2. DBS results show that the apparent divancancy concentration decreases at 3He implantation depth ∼435 nm due to 3He passivation of vacancies that occurs during the implantation process. After 900 °C annealing, large defects are detected at depth up to 2 μm and (S, W) values suggest the detection of cavities at the implantation depth. We also report the possible presence of impurity complexes. The formation of these complexes is attributed to the gettering of metallic impurities present in the Si sample.  相似文献   

11.
The surface of poly(tetrafluoroethylene) (PTFE or Teflon) was treated by nitrogen plasma-based ion implantation. Accelerating voltages between 15 and 30 kV, fluences between 1 × 1017 and 3 × 1017 cm−2 and fluence rates between 3 × 1013 and 7 × 1013 cm−2 s−1 were applied. The effects of these main parameters were examined on the evolution of surface chemical composition, mean roughness, abrasive wear, wettability and surface electrical resistance. The aim was to obtain relationships, enabling to control the surface properties examined.The F/C atomic ratio determined by XPS strongly decreased, correlating inversely with voltage. The mean surface roughness characterized by topography measurements, increased, correlating directly with fluence and inversely with voltage. The wear volume obtained by multipass scratch tests did not show clear relationship with the main process parameters, however, it increased upon treatment with the increase of surface roughness and O/C atomic ratio. The water contact angle increased at low voltages and high fluences, due to preferential increase of roughness, and decreased at high voltages and low fluences, owing to intense defluorination and incorporation of N and O. The electrical resistance of the PBII-treated surfaces decreased by several orders of magnitude, showing a significant inverse correlation with fluence. It continued to decrease for samples exposed to air, primarily after treatments performed with low fluences, due to post-treatment type oxidation.  相似文献   

12.
A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm−1 and 1600 cm−1 respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 μm and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kgf/mm2 (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (Ra) in the range of 1.5-4 μm depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.  相似文献   

13.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

14.
Ultra-low-energy ion implantation of silicon with a hydrogen-terminated (0 0 1) surface was carried out using a mass-separated 31P+ ion beam. The ion energy was 30 eV, the displacement energy of silicon, and the ion doses were 6 × 1013 ions/cm2. Annealing after the implantation was not carried out. The effects of ion implantation on the surface electrical state of silicon were investigated using X-ray photoelectron spectroscopy (XPS). The Si 2p peak position using XPS depends on the doping conditions because the Fermi level of the hydrogen-terminated silicon surface is unpinned. The Si 2p peak position of the specimen after ion implantation at a vacuum pressure of 3 × 10−7 Pa was shifted to the higher energy region. It suggested the possibility of phosphorus doping in silicon without annealing. In the case of ion implantation at 5 × 10−5 Pa, the Si 2p peak position was not shifted, and the peak was broadened because of the damage by the fast neutrals. Ultra-low-energy ion doping can be achieved at ultra-high-vacuum conditions.  相似文献   

15.
Oxygen ions were implanted in to austenitic stainless steel by plasma immersion ion implantation at 400 °C. The implanted samples were characterized by XPS, GIXRD, micro-Raman, AFM, optical and scanning electron microscopies. XPS studies showed the presence of Fe in elemental, as Fe2+ in oxide form and as Fe3+ in the form of oxyhydroxides in the substrate. Iron was present in the oxidation states of Fe2+ and Fe3+ in the implanted samples. Cr and Mn were present as Cr3+ and Mn2+, respectively, in both the substrate and implanted samples. Nickel remained unaffected by implantation. GIXRD and micro-Raman studies showed the oxide to be a mixture of spinel and corundum structures. Optical and AFM images showed an island structure on underlying oxide. This island structure was preserved at different thicknesses. Further, near the grain boundaries more oxide growth was found. This is explained on the basis of faster diffusion of oxygen in the grain boundary regions. Measurement of total hemispherical optical aborptance, α and emittance, ? of the implanted sample show that it has good solar selective properties.  相似文献   

16.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

17.
GaN phase is synthesized using systemic implantation of nitrogen ions of multiple energies (290, 130 and 50 keV) into Zn-doped GaAs (1 0 0) at room temperature and subsequent annealing at 850 °C for 30 min in Ar + H2 atmosphere. The implanted doses of nitrogen ions are 5 × 1016 and 1 × 1017 ions-cm−2. Glancing angle X-ray diffraction studies show that hexagonal phase of GaN were formed. The photoluminescence studies show the emission from the band edge as well as from point defects.  相似文献   

18.
Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO2 and Al2O3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar+ ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15°, 45° and 75° relative to the sample surface.It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO2 samples, producing ZrO and free Zr along with ZrO2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al2O3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering.Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.  相似文献   

19.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

20.
The plasma surface treatment and ion implantation were utilized to improve the stability of charge storage in the SiO2 film electret. It was found that the SiO2 films treated by argon plasma with the arcing at 700 V for 15 min, or implanted by 150 keV (kilo electron volt) Ar+ with a dose of 2 × 1011 cm−2, after being negatively charged, showed a remnant negative potential as large as 90% of the primary value after being stored in a glass container with desiccant for 10 days. It was also found that after being negatively charged at room temperature and aged at 200-350 °C for several times, the SiO2 films implanted by 150 keV Ar+ had a relatively high remnant potential and it did not decay significantly even after being heated at the aging temperature of 200-350 °C in room atmosphere for 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号